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A B S T R A C T

Deep fuzzy systems are widely used in time series forecasting tasks due to their excellent nonlinear
transformation capabilities and interpretability. However, traditional optimization methods and fixed network
structures cannot make the deep fuzzy system obtain the expected prediction accuracy and generalization
ability. Therefore, a novel hybrid deep fuzzy model (HDFM) is proposed in this paper. Firstly, two types
fuzzy modules, namely the type-1 TSK fuzzy module (T1TSKFM) and the interval type-2 TSK fuzzy module
(IT2TSKFM), are respectively presented and designed in detail. And, the gradient expressions of the fuzzy
parameters, including the antecedent and consequent parameters, are also derived in detail. Secondly, in
order to optimize the fuzzy parameters and to further accelerate the module convergence, a novel parameter
optimization strategy is presented, combining the gradient descent with the Regularization, the DropRule and
the AdaBound algorithms. Thirdly, a new stacked hybrid deep fuzzy architecture is proposed, which can be
automatically trained and constructed using the designed T1TSKFM and the IT2TSKFM. Then, the detailed
data-driven learning and updating strategy are given in step by step way. In addition, both the layered
structure interpretability and the fuzzy rule interpretability are respectively analyzed. This can guarantee that
the proposed model not only has the better forecasting accuracy, but also has the higher interpretability.
Finally, in order to verify the effectiveness of the proposed method, several comparative experiments are
given. Experimental results show that the forecasting performance of the proposed model outperforms the
other comparisons, such as the DIRM-DFM, the IT2DIRM-DFM, the DCFS, and the ANFIS method. At the same
time, the proposed model has better interpretability and more flexible construction property.
1. Introduction

Time series forecasting problem is widely used in daily life, such
as the stock prediction (Singh & Srivastava, 2017), the power load
prediction (Li, Su, & Shu, 2014), the photovoltaic power generation pre-
diction (Cervone, Clemente-Harding, Alessandrini, & Delle Monache,
2017; Chu et al., 2015; Hossain, Mekhilef, Danesh, Olatomiwa, &
Shamshirband, 2017; Li, Wen, Tseng, & Wang, 2019; Zhou, Zhou,
Gong, & Jiang, 2020) and so on. Accurate prediction will directly help
decision makers and managers to timely adjust policies or make proper
planning.

Time series forecasting task is a typical nonlinear regression prob-
lem. As a simple and effective way, machine learning methods have
been widely and successfully applied in solving time series predic-
tion problems (Cheng, Wan, Choo, et al., 2018; Karevan & Suykens,
2020; Liu, Gong, Yang and Chen, 2020; Liu, Liu and Wu, 2020),
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benefitting from the better generalization performance and predic-
tion performance. In Liu, Liu et al. (2020), a new convolutional neu-
ral network FCB-CNN was proposed and verified on 12 benchmark
datasets, which effectively improved the stability and prediction ac-
curacy of deep learning in time series prediction. Liu, Gong et al.
(2020) introduced the attention mechanism into the recurrent neural
network(RNN), and successfully applied in four prediction scenarios,
i.e., energy, finance, environment and medical fields. Karevan and
Suykens (2020) proposed a T-LSTM model based on transductive learn-
ing and data-driven strategy and applied it to the accurate prediction
of weather conditions. Cheng et al. (2018) proposed a method of
unsupervised pre-training through deep confidence networks, and then
supervised curve fitting by RNN to successfully predict the change trend
of time series in IoT applications. Although the above machine learn-
ing methods show well prediction ability and generalization ability,
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they still face with some problems, such as difficulty in tuning hyper
parameters, rely on the large training set and weak interpretability.

Benefitting from the higher interpretability and stronger approxima-
tion ability, TSK fuzzy logic system (Coupland & John, 2008; Nguyen
et al., 2019) has gradually become an efficient method to solve the
modeling and uncertainty characterization of complex systems. There-
fore, the TSK fuzzy logic system has been successfully applied to time
series prediction scenarios (Bilgili, Ilhan, & Ünal, 2022; Tak, Evren,
Tez, & Egrioglu, 2018; Zhang & Peng, 2021), and exhibited outstanding
predictive performance. In Tak et al. (2018), an improved cyclic type-
1 fuzzy method was proposed by considering the disturbance term on
the basis of the method of moving average (MA) model. Zhang and
Peng (2021) proposed an interval type-2 fuzzy logic system (IT2FLS)
based on particle swarm optimization (PSO) algorithm and used it to
accurately predict time series data in application fields with strong ran-
domness, such as building energy consumption. A time series prediction
method based on ANFIS and LSTM was proposed and successfully ap-
plied it to the hourly prediction of air pressure time series in Bilgili et al.
(2022). In addition, some recent forecasting and optimization works on
fuzzy time series have also gained widespread attention (Singh, 2020,
2021; Singh & Huang, 2019). Singh (2021) proposed a fuzzy quantum
time series forecasting model (FQTSFM) and focused on the impact
of the selection of the universe of discourse and the determination
of the fuzzy degree of the memberships on time series forecasting
performance. In Singh (2020), the fuzzy membership degree was used
to describe the neutrosophic set (NS), and a solution based on the
PSO algorithm was given for the optimal selection of the domain of
time series datasets, which obtained better results than the benchmark
model. In Singh and Huang (2019), a neutrosophic entropy decision
rule based on the IF-THEN structure is proposed, and the ANN-based
architecture takes NEDR as input to evolve the prediction results,
improve the performance of the artificial neural network and obtain the
best prediction results. However, these models based on fuzzy systems
usually have the shallow hierarchy structure, and still have a risk of the
rule explosion, especially when facing the increase of input dimension
or handling the big data.

Inspired by the idea of neural network, some modular fuzzy models
have been proposed recently, especially the fuzzy models based on
single input rule module (SIRM-FM) (Yi, Yubazaki, & Hirota, 2001)
and its improved versions, FSIRM-FM (Seki, Ishii, & Mizumoto, 2008),
T2SIRM-FM (Li & Yi, 2010), FWSIRM-FM (Li, Gao, Yi, & Zhang, 2016),
DIRM-DFM (Li, Zhou, Peng, Lv, & Luo, 2020), IT2DIRM-DFM (Peng,
Zhou, Li, Deng, & Zhang, 2021). These modular fuzzy models behave
good interpretability and nonlinear approximation ability, and can
effectively describe the uncertainties. However, in terms of structure,
the above methods generally are composed of fuzzy modules on a single
type, and lacks of flexibility. On the other hand, the above deep fuzzy
models generally use the least squares method or its improved algo-
rithm for the parameter optimization. Because the parameter accuracy
optimized largely effects the prediction performance and generalization
ability of the models, it is critical to find the more efficiently method
to optimize the parameters.

In order to solve the parameters optimization problem, improve the
generalization ability and guarantee the interpretability, a novel hybrid
deep fuzzy system (HDFM) is proposed in this study. Different from the
deep fuzzy models in Li et al. (2016), Li and Yi (2010), Li et al. (2020),
Peng et al. (2021), Seki et al. (2008) and Yi et al. (2001), the proposed
HDFM fuses two types of fuzzy modules to improve the construction
flexibility and obtain the tradeoff of computation time and prediction
accuracy. On the other hand, the proposed HDFM no longer restricts the
input dimension of the fuzzy module. Therefore, the width of the HDFM
will be reduced under the same input dimension of the model, and
computation time will also be further shortened. And then, a parameter
optimization strategy combining the gradient descent with the Regular-
ization, the DropRule and the AdaBound algorithms is presented and
2

used to optimized each fuzzy modules of HDFM. Compared with the
optimization method based on the least squares algorithm used in Li
et al. (2016), Li and Yi (2010), Li et al. (2020), Peng et al. (2021),
Seki et al. (2008) and Yi et al. (2001), the proposed method(parameter
optimization strategy) effectively suppresses the overfitting problem
and achieves better generalization performance.

Here, the main contributions and innovations of this study are
summarized as follows:

• Two types fuzzy modules, i.e., type-1 TSK fuzzy module
(T1TSKFM) and the interval type-2 TSK fuzzy module
(IT2TSKFM), are presented and designed in respectively. Then,
the gradients of parameters, including the antecedents and the
consequents, of the IT2TSKFM are given in detail. In addition, the
gradient-based optimization algorithm is presented, combining
with the Regularization, the DropRule and the AdaBound meth-
ods, and then is applied to the IT2TSKFM to optimize the fuzzy
parameters and to further accelerate the module convergence.

• A new stacked hybrid deep fuzzy architecture is proposed, which
can be automatically trained and constructed using the designed
T1TSKFM and the IT2TSKFM. Then, the detailed data-driven
learning strategy is given in step by step way. In addition, both
the layered structure interpretability and the fuzzy rule inter-
pretability are respectively analyzed.

• In order to verify the effectiveness of the proposed method,
several comparative experiments are given. Experimental results
show that the forecasting performance of the proposed model
outperforms the other comparisons, such as the DIRM-DFM, the
IT2DIRM-DFM, the DCFS, and the ANFIS method, by keeping
better interpretability and more flexible construction property.

The remaining content is organized as follows. In Section 2, the
theoretical background is reviewed, mainly including fuzzy sets and
fuzzy systems. In Section 3, two types of TSK fuzzy modules are
designed. Then, the training strategy and the gradients of the param-
eters for IT2TSKFM are given in respectively. In Section 4, the novel
HDFM is proposed, which can be automatically trained and constructed
using the designed T1TSKFM and the IT2TSKFM. Furthermore, the
automatically structure updating strategy is given. Then, the detailed
data-driven learning strategy of the HDFM is given in step by step
way. Both the layered interpretability and rule interpretability are
also analyzed. In Section 5, comparative experiments are designed on
three public datasets, and the advantages and disadvantages of each
comparison model are analyzed by combining various performance
indicators. Finally, the conclusion is given in Section 6.

2. Background review

In this section, two types of fuzzy sets and the corresponding fuzzy
logic systems will be briefly reviewed.

2.1. Fuzzy sets

Generally, a fuzzy set 𝐴 (Zadeh, 1965) is defined as a set function,
nd the domain 𝑋 can be mapped between [0, 1]. For the fuzzy set
,̃ a membership function (MF) 𝜇𝐴(𝑥) is used to describe mapping

elationship on the 𝑋 → [0, 1].
For the continuous domain 𝑋, then the fuzzy set 𝐴 can be expressed

s

̃= ∫𝑥∈𝑋

𝜇𝐴(𝑥)
𝑥

, (2.1)

where, 0 ≤ 𝜇𝐴(𝑥) ≤ 1.
If the domain 𝑋 is discrete and expressed as 𝑋𝑑 , then the fuzzy set

𝐴 can be expressed as

𝐴 =
∑ 𝜇𝐴(𝑥)

𝑥
. (2.2)
𝑥∈𝑋𝑑
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Fig. 1. Schematic diagram of the T2FLS.
𝜇

A type-2 fuzzy set(T2FS) 𝐴 (Zadeh, 1975), often called a general
type-2 fuzzy set(GT2FS), is a set of three dimensional spaces, which is
usually described by

𝐴 =
{(

(𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)
)

∣ 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈 ≡ [0, 1]
}

, (2.3)

where, 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1. 𝑋 is of the principal variable 𝑥 of the fuzzy
set 𝐴. 𝑈 is the domain of the secondary variable 𝑢 of the fuzzy set 𝐴,
and is often assumed to be [0, 1]. So the fuzzy set 𝐴 for GT2FS can be
denoted as

𝐴 = ∫𝑥∈𝑋 ∫𝑢∈[0,1]

𝜇𝐴(𝑥, 𝑢)
𝑥, 𝑢

. (2.4)

However, for ∀𝑥 ∈ 𝐗 and 𝑢 ∈ 𝑈 ∈ [0, 1], if 𝜇𝐴(𝑥, 𝑢) = 1, then GT2FS
will be simplified as an interval type-2 fuzzy set (IT2FS) (Mendel,
2017), as

𝐴 = ∫𝑥∈𝑋 ∫𝑢∈[0,1]
1∕(𝑥, 𝑢). (2.5)

2.2. Fuzzy logic systems

Fuzzy logic systems are developed on the basis of fuzzy sets, and
have been widely used in modeling and control. Simply speaking, by
converting the type-1 fuzzy set (T1FS) into T2FS, the type-1 fuzzy
logic system (T1FLS) can be transformed into type-2 fuzzy logic system
(T2FLS). In fact, there is still some great difference between the T1FLS
and the T2FLS. Fig. 1 shows the block diagram of the T2FLS.

(1) Fuzzifier: it realizes that the accurate input vector 𝐱 =
(

𝑥1, 𝑥2,
… , 𝑥𝑀

)T ∈ 𝑋1 × 𝑋2 ×⋯…× 𝑋𝑀 ≡ X maps to the fuzzy set 𝐴 on the
domain 𝑈 . The single-valued fuzzifier is an effective way.

(2) Rule Base: the TSK fuzzy rule is a common expressions of the
consequents.

IF 𝑥1 is 𝑋𝑟,1 and...and 𝑥𝑀 is 𝑋𝑟,𝑀 THEN 𝑦𝑟 is 𝑔(𝑥1, 𝑥2,… , 𝑥𝑀 ), (2.6)

where, 𝑟 = 1, 2,… , 𝑅, denotes the 𝑟th rule. 𝑋𝑟,1,… , 𝑋𝑟,𝑀 are the
antecedents of the rule. For the consequent, 𝑔(𝑥1, 𝑥2,… , 𝑥𝑀 ) is the
linear polynomial for the TSK rule.

(3) Fuzzy Inference: it is mainly used to calculate the fired degree
from multiple antecedents for each of fuzzy rules. The product 𝑡-norm
is a common method.

(4) Output Processing: for the TSK fuzzy system, some effective
direct defuzzification methods, such as Biglarbegian–Melek–Mendel
(BMM) (Begian, Melek, & Mendel, 2008), can be used to directly obtain
the crisp output.
3

3. The design of two types of TSK fuzzy modules and optimization

In this section, two types of TSK fuzzy modules, i.e., the T1TSKFM
and the IT2TSKFM are given in detailed. Then, a novel strategy for
optimizing the TSK fuzzy modules is proposed, in order to optimize
the parameters and to accelerate the modules convergence.

3.1. The design of two types of TSK fuzzy modules

A. Type-1 TSK Fuzzy Module
Assume that the input vector 𝐱 =

(

𝒙1,… ,𝒙𝑁
)T ∈ R𝑁×𝑀 ,𝒙𝑁 =

(

𝒙𝑠1,… ,𝒙𝑠𝑀
)

, 𝑠 = 1,… , 𝑁.𝑀 denotes the dimension of input samples,
and 𝑁 denotes the number of samples. Here, the Gaussian MF (G-
MF) is chosen to describe the fuzzy set, and its membership degree is
calculated as follows

𝜇𝑋𝑟,𝑗
= exp

⎡

⎢

⎢

⎣

−

(

𝒙𝑠𝑗 − 𝑚𝑟,𝑗
)2

2𝜎2𝑟,𝑗

⎤

⎥

⎥

⎦

. (3.1)

For the T1TSKFM, the 𝑟th rule can be expressed as follows

IF 𝒙𝑠1 is 𝑋𝑟,1 and...and 𝒙𝑠𝑀 is 𝑋𝑟,𝑀 THEN 𝑦𝑟 = 𝜔𝑟,0 +
𝑀
∑

𝑗=1
𝜔𝑟,𝑗𝒙𝑠𝑗 , (3.2)

where 𝑟 = 1,… , 𝑅, 𝜔𝑟,0 and 𝜔𝑟,𝑗 are the consequent parameters of the
rule.

The fired degree of the 𝑟th fuzzy rule can be obtained by the product
𝑡-norm

𝐹r (𝐱) =
M
∏

𝑗=1
𝜇𝑋𝑟,𝑗

(

𝒙𝑠𝑗
)

, (3.3)

where 𝜇𝑋𝑟,𝑗
is the membership degree of input 𝒙𝑠𝑗 in the fuzzy set 𝑋𝑟,𝑗 .

The final fuzzy output can be expressed as

y =
∑R

𝑟=1 𝐹𝑟(𝐱) ⋅ y𝑟
∑R

𝑟=1 𝐹r (𝐱)

=

∑R
𝑟=1

∏M
𝑗=1 𝜇𝑋𝑗

(

𝒙𝑠𝑗
)

(

𝜔𝑟,0 +
∑M

𝑗=1 𝜔𝑗𝒙𝑠𝑗
)

∑R
𝑟=1

∏M
𝑗=1 𝜇𝑋𝑗

(

𝒙𝑠𝑗
)

. (3.4)

B. Interval Type-2 TSK Fuzzy Module
The G-MFs are chosen to characterize the IT2FSs and can be ex-

pressed as

̄𝑋𝑟,𝑗
= exp

⎡

⎢

⎢

⎣

−

(

𝒙𝑠𝑗 − 𝑚𝑟,𝑗
)2

2𝜎̄2r,𝑗

⎤

⎥

⎥

⎦

, (3.5)

𝜇
𝑋𝑟,𝑗

= exp
⎡

⎢

⎢

−

(

𝒙𝑠𝑗 − 𝑚𝑟,𝑗
)2

2𝜎2

⎤

⎥

⎥

. (3.6)

⎣

r,𝑗
⎦
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For the IT2TSKFM, the 𝑟th rule is given as follows

IF 𝒙𝑠1 is 𝑋𝑟,1 and...and 𝒙𝑠𝑀 is 𝑋𝑟,𝑀 THEN 𝑦𝑟 =
[

𝑦
𝑟
(𝐱), 𝑦𝑟(𝐱)

]

, (3.7)

where, 𝑟 = 1,… , 𝑅, 𝜔̄𝑟,0, 𝜔̄𝑟,𝑗 , 𝜔𝑟,0, and 𝜔𝑟,𝑗 are the consequent parame-

ters of rule, and 𝑦
𝑟
(𝐱) = 𝜔𝑟,0 +

∑M
𝑗=0 𝜔𝑟,𝑗𝒙𝑠𝑗 , 𝑦̄r (𝐱) = 𝜔̄𝑟,0 +

∑M
𝑗=0 𝜔̄𝑟,𝑗𝒙𝑠𝑗 .

The fired degree interval of the 𝑟th fuzzy rule can be obtained as

𝐹𝑟(𝐱) =
[

𝑓
𝑟
(𝐱), 𝑓𝑟(𝐱)

]

, (3.8)

where 𝑓𝑟(𝐱) =
∏M

𝑗=1 𝜇̄𝑋̃𝑟,𝑗

(

𝒙𝑠𝑗
)

, and 𝑓
𝑟
(𝐱) =

∏M
𝑗=1 𝜇𝑋𝑟,𝑗

(

𝒙𝑠𝑗
)

.
The final fuzzy output calculated by BMM can be expressed as

̂(𝐱) = 𝛼

∑R
r=1 𝑓 𝑟

(𝐱)𝑦
𝑟
(𝐱)

∑R
r=1 𝑓−r (𝐱)

+ 𝛽
∑R

r=1 𝑓r (𝐱)𝑦̄r (𝐱)
∑R

r=1 𝑓r (𝐱)
, (3.9)

where, 𝛼 and 𝛽 are coefficients of BMM, and 𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0.

.2. Optimization algorithm for IT2TSKFM

Inspired by the ideas of literature (Wu, Yuan, Huang, & Tan, 2019),
new regularization item and the detailed gradient formulations for

he IT2TSKFM are presented. Then, a novel parameter optimization
trategy combining the gradient descent with the Regularization, the
ropRule and the AdaBound algorithms is given and applied to opti-
ize the parameters of IT2TSKFM and to further accelerate the module

onvergence.
A. Regularization and Gradient Formulations

In this work, a new loss function for the IT2TSKFM is proposed as
ollows by introducing the 𝑙2 regularization, in order to improve the

parameter tuning

𝑳 = 1
2

N
∑

𝑛=1

[

y𝑛 − y
(

𝐱𝑛
)]2 + 𝜆

2

R
∑

𝑟=1
(𝜔2

𝑟 + 𝜔̄2
𝑟 ). (3.10)

Substituting Eq. (3.9) into (3.10), the loss function can be further
xpressed as

=1
2

N
∑

𝑛=1

⎡

⎢

⎢

⎣

y𝑛 −
⎛

⎜

⎜

⎝

𝛼

∑R
𝑟=1 𝑓 𝑟

(

𝐱𝑛
)

× y
𝑟

(

𝐱𝑛
)

∑R
𝑟=1 𝑓𝑟

(

𝐱𝑛
)

+ 𝛽
∑R

𝑟=1 𝑓𝑟
(

𝐱𝑛
)

× 𝑦𝑟
(

𝐱𝑛
)

∑R
𝑟=1 𝑓𝑟

(

𝐱𝑛
)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

2

+ 𝜆
2

R
∑

𝑟=1

(

𝜔2
𝑟 + 𝜔̄2

𝑟
)

, (3.11)

where 𝜆 is the coefficient of the 𝑙2 regularization, and 𝜆 ≥ 0.
According to the loss function (3.11), the gradient derivation of the

parameters for the IT2TSKFM can be obtained as follows

𝜕𝑳
𝜕𝑐𝑟,𝑚

=1
2

Nbs
∑

𝑛=1

R
∑

𝑘=1

𝜕𝑳
𝜕ŷ

(

𝐱𝑛
)

⎡

⎢

⎢

⎣

𝜕ŷ
(

𝐱𝑛
)

𝜕𝑓
𝑘

(

𝐱𝑛
)

𝜕𝑓
𝑘

(

𝐱𝑛
)

𝜕𝜇
𝑋𝑘,𝑚

(

𝑥𝑛,𝑚
)

𝜕𝜇
𝑋𝑘,𝑚

(

𝑥𝑛,𝑚
)

𝜕𝑐𝑟,𝑚

+
𝜕ŷ

(

𝐱𝑛
)

𝜕𝑓𝑘
(

𝐱𝑛
)

𝜕𝑓𝑘
(

𝐱𝑛
)

𝜕𝜇̄𝑋𝑘𝑚

(

𝑥𝑛,𝑚
)

𝜕𝜇̄𝑋𝑘𝑚

(

𝑥𝑛,𝑚
)

𝜕𝑐𝑟,𝑚

⎤

⎥

⎥

⎦

=
Nbs
∑

𝑛=1

∑

𝑘∈𝛷(𝑟,𝑚)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛼
y
𝑘(𝐱𝑛)

∑R
𝑖=1 𝑓 𝑖(𝐱𝑛)−

∑R
𝑖=1 𝑓 𝑖(𝐱𝑛)y𝑖(𝐱𝑛)

[

∑R
𝑖=1 𝑓 𝑖(𝐱𝑛)

]2
(ŷ(𝐱𝑛)−y𝑛)

𝑓
𝑘

(

𝐱𝑛
) (𝑥𝑛,𝑚−𝑐𝑟,𝑚)

𝜎2𝑟,𝑚

+𝛽 y𝑘(𝐱𝑛)
∑R

𝑖=1 𝑓𝑖(𝐱𝑛)−
∑R

𝑖=1 𝑓𝑖(𝐱𝑛)y𝑖(𝐱𝑛)
[

∑R
𝑖=1 𝑓𝑖(𝐱𝑛)

]2
(ŷ(𝐱𝑛)−y𝑛)

𝑓𝑘(𝐱𝑛)
(𝑥𝑛,𝑚−𝑐𝑟,𝑚)

𝜎̄2𝑟,𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(3.12)

𝜕𝑳
𝜕𝜎

= 1
2

Nbs
∑

R
∑ 𝜕𝑳

𝜕ŷ
(

𝐱
)

𝜕ŷ
(

𝐱𝑛
)

𝜕𝑓
(

𝐱
)

𝜕𝑓
𝑘

(

𝐱𝑛
)

𝜕𝜇
(

𝑥
)

𝜕𝜇
𝑋𝑘,𝑚

(

𝑥𝑛,𝑚
)

𝜕𝜎
4

𝑟,𝑚 𝑛=1 𝑘=1 𝑛 𝑘 𝑛 𝑋𝑘,𝑚
𝑛,𝑚 𝑟,𝑚
=
𝑁𝑏𝑠
∑

𝑛=1

∑

𝑘∈𝛷(𝑟,𝑚)

⎡

⎢

⎢

⎢

⎣

𝛼

[

𝑦
𝑘

(

𝐱𝑛
)
∑𝑅

𝑖=1 𝑓 𝑖

(

𝐱𝑛
)

−
∑𝑅

𝑖=1 𝑓 𝑖

(

𝐱𝑛
)

𝑦
𝑖

(

𝐱𝑛
)

]

[

∑𝑅
𝑖=1 𝑓 𝑖

(

𝐱𝑛
)

]2
(

ŷ
(

𝐱𝑛
)

− y𝑛
)

𝑓
𝑘

×
(

𝐱𝑛
)

(

𝑥𝑛,𝑚 − 𝑐𝑟,𝑚
)2

𝜎3𝑟,𝑚

⎤

⎥

⎥

⎥

⎦

, (3.13)

𝜕𝐿
𝜕𝜎̄𝑟,𝑚

= 1
2

𝑁𝑏𝑠
∑

𝑛=1

𝑅
∑

𝑘=1

𝜕𝐿
𝜕𝑦̂

(

𝐱𝑛
)

𝜕𝑦̂
(

𝐱𝑛
)

𝜕𝑓𝑘
(

𝐱𝑛
)

𝜕𝑓𝑘
(

𝐱𝑛
)

𝜕𝜇̄𝑋𝑘,𝑚

(

𝑥𝑛,𝑚
)

𝜕𝜇̄𝑋𝑘,𝑚

(

𝑥𝑛,𝑚
)

𝜕𝜎̄𝑟,𝑚

=
𝑁𝑏𝑠
∑

𝑛=1

∑

𝑘∈𝛷(𝑟,𝑚)

⎡

⎢

⎢

⎢

⎣

𝛽

[

𝑦̄𝑘
(

𝐱𝑛
)
∑𝑅

𝑖=1 𝑓𝑖
(

𝐱𝑛
)

−
∑𝑅

𝑖=𝑙 𝑓𝑖
(

𝐱𝑛
)

𝑦̄𝑖
(

𝐱𝑛
)

]

[

∑𝑅
𝑖=1 𝑓𝑖

(

𝒙𝑛
)

]2
(

ŷ
(

𝐱𝑛
)

− y𝑛
)

𝑓
𝑘

×
(

𝐱𝑛
)

(

𝑥𝑛,𝑚 − 𝑐𝑟,𝑚
)2

𝜎̄3𝑟,𝑚

⎤

⎥

⎥

⎥

⎦

, (3.14)

𝜕𝑳
𝜕𝜔𝑟

= 1
2

Nbs
∑

𝑛=1

𝜕𝑳
𝜕ŷ

(

𝐱𝑛
)

𝜕ŷ
(

𝐱𝑛
)

𝜕y
𝑟

(

𝐱𝑛
)

𝜕y
r

(

𝐱𝑛
)

𝜕𝜔𝑟
+ 𝜆

2
𝜕𝑳
𝜕𝜔𝑟

=
Nbs
∑

𝑛=1

⎡

⎢

⎢

⎢

⎣

(

ŷ
(

𝐱𝑛
)

− y𝑛
)

⎡

⎢

⎢

⎢

⎣

𝛼
𝑓
𝑘

(

𝐱𝑛
)

[

∑R
𝑖=1 𝑓 𝑖

(

𝐱𝑛
)

]2

⎤

⎥

⎥

⎥

⎦

𝜔𝑟

⎤

⎥

⎥

⎥

⎦

+ 𝜆𝜔𝑟′ (3.15)

𝜕𝑳
𝜕𝜔̄𝑟

= 1
2

Nbs
∑

𝑛=1

𝜕𝑳
𝜕ŷ

(

𝐱𝑛
)

𝜕ŷ
(

𝐱𝑛
)

𝜕y𝑟
(

𝐱𝑛
)

𝜕y𝑟
(

𝐱𝑛
)

𝜕𝜔̄𝑟
+ 𝜆

2
𝜕𝑳
𝜕𝜔̄𝑟

=
N𝑏𝑠
∑

𝑛=1

⎡

⎢

⎢

⎢

⎣

ŷ
(

𝐱𝑛
)

− y𝑛

⎡

⎢

⎢

⎢

⎣

𝛽
𝑓𝑘

(

𝐱𝑛
)

[

∑R
𝑖=1 𝑓𝑖

(

𝐱𝑛
)

]2

⎤

⎥

⎥

⎥

⎦

𝜔̄𝑟

⎤

⎥

⎥

⎥

⎦

+ 𝜆𝜔̄𝑟, (3.16)

where 𝛷(𝑟, 𝑚) is the rules which contains the 𝑋𝑟,𝑚, 𝑥𝑛,0 ≡ 1, and 𝑁𝑏𝑠 is
he batch size in the gradient descent. A mini-batch gradient descent
lgorithm is presented to optimize the antecedent and consequent
arameters of the IT2TSKFM in this work. In each epoch, this algorithm
andomly selects 𝑁𝑏𝑠 training samples and calculates the gradient.
hen, the parameters of the IT2TSKFM will be updated. Make 𝜽𝑘 is
he parameter vector of the 𝑘th iterates, and 𝜕𝑳∕𝜕𝜽𝑘 is the first-order
radient. Then, the update rule is

𝑘 = 𝜽𝑘−𝑙 − 𝛼 𝜕𝑳
𝜕𝜽𝑘

, (3.17)

where, 𝛼 is learning rate.
B. IT2TSKFM’s Training Strategy
Referring to the ideas of Srivastava, Hinton, Krizhevsky, Sutskever,

and Salakhutdinov (2014) and Wan, Zeiler, Zhang, Le Cun, and Fer-
gus (2013), this paper adopts the DropRule algorithm to accelerate
the module training and to improve the generalization ability of the
IT2TSKFM. On the other hand, the AdaBound (Luo, Xiong, Liu, & Sun,
2019) algorithm is used to effectively deal with the sparse gradient
and non-stationary conditions, then applied to further accelerate the
convergence of the IT2TSKFM.

Thanks to the proposed loss function and the corresponded gradient
formulations of the IT2TSKFM, the integrated module training strategy
which combines the gradient descent and AdaBound algorithm is firstly
introduced to the IT2TSKFM and used to optimize the parameters.
The proposed integrated module training strategy have more effective
convergence and more excellent generalization ability. The adopted
bound functions are respectively given as follows

𝑙(𝑘) = 0.01 − 0.01
(

1 − 𝛽2
)

𝑘 + 1
, (3.18)

𝑢(𝑘) = 0.01 − 0.01
( ) , (3.19)

1 − 𝛽2 𝑘
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Fig. 2. Hierarchical structure of the proposed hybrid deep fuzzy model.
when 𝑘 → 0, the learning rate 𝛼 is limited to the interval [0,+∞), and
when 𝑘 → +∞, the learning rate 𝛼 is limited to a constant 0.01.

4. The proposed hybrid deep Fuzzy model

Due to the powerful ability for handling uncertainties and better
interpretability, modular fuzzy models, especially modular deep fuzzy
model, are regarded as one of the promising methods for dealing with
the big data applications. Inspired by the ideas of the SAE (Vincent
et al., 2010) and the DCFS (Wang, 2019), a novel stacked modular
hybrid deep fuzzy model (HDFM) is presented in this section. In detail,
the new structure of the proposed HDFM is described and the auto-
construction strategy of each layer is given based on the optimized
T1TSKFM and the IT2TSKFM. Then, the hierarchical data-driven learn-
ing strategy of the proposed HDFM is detailed given in layered by
layered way. In addition, both the layered interpretability and the rule
interpretability is respectively analyzed.

In this section, the hierarchical structure of the proposed HDFM
will be given in detailed. Then, the auto-construction strategy will be
presented.

4.1. The hierarchical structure and the performance evaluation metrics

A. The Hierarchical Structure of the HDFM
The hierarchical structure of the proposed HDFM consists of the

input layer, the stack layer, the dimension reduction layer and the
output layer, and is automatically constructed in stacking manner
by using the optimized T1TSKFM and the IT2TSKFM. As shown in
Fig. 2, each box is a component of the HDFM and represents a TSK
fuzzy module (red boxes represent the trained T1TSKFMs, yellow boxes
represent the trained IT2TSKFMs, blue boxed represent the training and
updating T1TSKFMs or theIT2TSKFMs). The dimension of the HDFM
and the input dimension of each module are adaptive according to
the dimension of the data sample and the number of former modules.
Without loss of generality, assuming that the dimensions of the 𝑙th layer
in the HDFM is 𝑀 , and can be denoted as I𝑙 =

(

𝑥𝑙1,… , 𝑥𝑙𝑀
)

. Similarly,
assuming that input dimension of the 𝑛th TSK fuzzy module (denoted
as TSK-FM𝑙

𝑛 is 𝐶, and can be expressed as I𝑙𝑛 =
(

𝑥𝑙𝑛,1,… , 𝑥𝑙𝑛,𝐶
)

. Then,
the 𝑟th fuzzy rule in TSK-FM𝑙

𝑛 can be expressed as follows.

IF 𝑥𝑙 is
(

𝑋𝑟
)𝑙

and,. . . , and 𝑥𝑙 is
(

𝑋𝑟
)𝑙
5

𝑛,1 1 𝑛 𝑛,𝐶 𝐶 𝑛
THEN
(

y𝑟
)𝑙
𝑛 is 𝑔𝑟

(

𝑥𝑙𝑛,1,… , 𝑥𝑙𝑛,𝐶
)𝑙

𝑛
(4.1)

It is important to note that for different types of TSK-FM𝑙
𝑛 (T1TSKFM

or IT2TSKFM), the expression of 𝑔𝑟
(

𝑥𝑙𝑛,1,… , 𝑥𝑙𝑛,𝐶
)𝑙

𝑛
is different.

T1TSKFM:𝐲𝑙𝑛
(

𝑥𝑙𝑛,1,… , 𝑥𝑙𝑛,𝐶
)

=

∑R
𝑙=1

∏C
𝑐=1 𝜇(𝑋𝑟

𝑐

)𝑙

𝑛

(

𝑥𝑙𝑛,𝑐
)

⋅
(

𝜔𝑟,0 +
∑𝐶

𝑐=1 𝜔𝑟,𝑐𝑥𝑙𝑛,𝑐
)𝑙

𝑛

∑R
𝑙=1

∏C
𝑐=1 𝜇(𝑋𝑟

𝑐

)𝑙

𝑛

(

𝑥𝑙𝑛,𝑐
) (4.2)

IT2TSKFM:𝐲𝑙𝑛
(

𝑥𝑙𝑛,1,… , 𝑥𝑙𝑛,𝐶
)

= 𝛼

∑R
𝑙=1

∏C
𝑐=1 𝜇(X̃𝑟

𝑐)𝑙𝑛

(

𝑥𝑙𝑛,𝑐
)

⋅
(

𝜔𝑟,0 +
∑𝐶

𝑐=1 𝜔𝑟,𝑐𝑥
𝑙
𝑛,𝑐

)𝑙

𝑛
∑R

𝑙=1
∏C

𝑐=1 𝜇(

𝑋𝑟
𝑐

)𝑙

𝑛

(

𝑥𝑙𝑛,𝑐
)

+ 𝛽

∑R
𝑟=1

∏C
𝑐=1 𝜇̄(𝑋𝑟

𝑐

)𝑙

𝑛

(

𝑥𝑙𝑛,𝑐
)

⋅
(

𝜔̄𝑟,0 +
∑𝐶

𝑐=1 𝜔̄𝑟,𝑐𝑥𝑙𝑛,𝑐
)𝑙

𝑛

∑R
𝑙=1

∏C
𝑐=1 𝜇̄(𝑋𝑟

𝑐

)𝑙

𝑛

(

𝑥𝑙𝑛,𝑐
) (4.3)

𝐲𝑙𝑛
(

𝑥𝑙𝑛,1,… , 𝑥𝑙𝑛,𝐶
)

is the output of TSK-FM𝑙
𝑛, and then is regarded as the

input for the next layer.
As shown in Fig. 2, the stacked HDFM is built in stacking manner by

the optimized T1TSKFMs or IT2TSKFMs. The dimension of each layer
in the HDFM is adaptive.

Input layer: The input layer implements the mapping from the
source dataset to the model. Here, assuming that the dimension of the
input dataset is 𝑀 and the sliding window size of the fuzzy module
in this layer is 𝐶, then the initialed 𝑀 − 𝐶 + 1 T1TSKFMs will be
automatically generated.

For the 𝑀 − 𝐶 + 1 T1TSKFMs in the input layer, the input data
can be expressed as I0𝑛 =

(

𝑥0𝑛,1,… , 𝑥0𝑛,𝐶
)

, 𝑛 = 1,…, 𝑀 − 𝐶 + 1
Then, the dimension of output is 𝑀 − 𝐶 + 1, and can be denoted as
𝐲0𝑛

(

𝑥0𝑛,1,… , 𝑥0𝑛,𝐶
)

.
Stack layer: It is clearly seen that the dimension of the stack layer

is 𝑀−𝐶 + 1 since the dimension of the input layer is 𝑀 . And assuming
that the sliding window size of the fuzzy module in the stack layer also
is 𝐶, thus the width of the stack layer is 𝑀−2𝐶 + 2. Similarly, assuming
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Fig. 3. Flow chart of the proposed HDFM.
that the depth of the stack layer is 𝐿, thus the total number of the fuzzy
modules is (𝑀 − 2C + 2)𝐿. For anyone fuzzy module in this layer, the
input can be denoted as I1𝑛 =

(

𝑥1𝑛,1,… , 𝑥1𝑛,𝑀−𝐶+1

)

and the output is

𝐲1𝑛
(

𝑥1𝑛,1,… , 𝑥1𝑛,𝑀−𝐶+1

)

with 𝑙 = 1, 2,… , 𝐿 and 𝑛 = 1,… ,𝑀 − 𝐶 + 1.
It is easily know that the width of this layer will naturally decrease as
the depth increase, due to there will be lack of 𝐶(𝐶 − 1) input for the
𝐶 −1th module in each layer. In order to solve the dimension decrease
of width, the 𝐶(𝐶 − 1) outputs of the former layer will be randomly
selected as the input for the (𝐶 − 1)th module in any layer.

Dimension reduction layer:In this layer, the width will naturally
decrease until to be 𝐶 fuzzy modules as the depth increase. The output
of the 𝐶 fuzzy modules, i.e., the last layer of the dimension reduction
layer, will consist of the input of the next layer (output layer). Assume
that the depth of the HDFM is 𝐾, then the input of the C fuzzy modules
is I𝐾−𝐿−2

𝑛 =
(

𝑥𝐾−𝐿−3
𝑛,1 ,… , 𝑥𝐾−𝐿−3

𝑛,𝐶

)

and the corresponding output is

𝐲𝐾−𝐿−2
𝑛

(

𝑥𝐾−𝐿−3
𝑛,1 ,… , 𝑥𝐾−𝐿−3

7,−𝐶

)

.
Output layer: taking the outputs of the C fuzzy modules 𝐲𝐾−𝐿−2

𝑛
(

𝑥𝐾−𝐿−3,… , 𝑥𝐾−𝐿−3
)

, 𝑛 = 0, 1,… , 𝐶 − 1, as the inputs, i.e., I𝐾−𝐿−1 =
6

𝑛,1 7,−𝐶 𝑛
𝐲𝐾−𝐿−2
𝑛

(

𝑥𝐾−𝐿−3
𝑛,1 ,… , 𝑥𝐾−𝐿−3

𝑛,𝐶

)

, the output layer will provide the final

forecasting result 𝐲𝐾−𝐿−1
𝑛

(

𝑥𝐾−𝐿−2
𝑛,1 ,… , 𝑥𝐾−𝐿−2

𝑚,𝐶

)

.
B. Performance Evaluation Metrics:
In this work, the mean square error (𝑅𝑀𝑆𝐸) and the training

time (𝑇 ) are chosen as the key evaluation indicators for each of fuzzy
modules. The proposed HDFM updates the hybrid structure accord-
ing to the performance evaluation metrics (𝑅𝑀𝑆𝐸 and 𝑇 ). 𝑅𝑀𝑆𝐸
measures the prediction accuracy of different fuzzy modules. At the
same time, the training time is also considered. That is to say, we
expect to minimize the training time overhead while obtaining superior
prediction accuracy. For anyone fuzzy module 𝑘, the 𝑅𝑀𝑆𝐸 and 𝑇 are
respectively defined as follows

𝑅𝑀𝑆𝐸𝑘 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1

(

ŷ(𝑛) − y(𝑛)
)2, (4.4)

𝑇𝑘 =
𝑁
∑

(

𝑡end − 𝑡start
)

𝑛 . (4.5)

𝑛=1
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f

𝑊

s

𝐼

t
t

[

𝐷

For the 𝑘th module, the proportion of the 𝑅𝑀𝑆𝐸𝑘 and the 𝑇𝑘 in all
uzzy modules can be obtained as follows

𝑅𝑀𝑆𝐸𝑘 =
𝑅𝑀𝑆𝐸𝑘

∑𝐾
𝑘=1 𝑅𝑀𝑆𝐸𝑘

, (4.6)

𝑊 𝑇𝑘 =
𝑇𝑘

∑K
𝑘=1 𝑇𝑘

. (4.7)

Then, in order to balance the training time and forecasting preci-
ion, a comprehensive evaluation metrics is introduced and defined as

𝑛𝑑𝑒𝑥𝑘 = 1
𝑝×𝑊𝑅𝑀𝑆𝐸𝑘 + 𝑞×𝑊 𝑇𝑘

, (4.8)

where 𝑝 and 𝑞 are balancing factors, and 𝑝 + 𝑞 = 1.
For the proposed HDFM, all the components (the T1TSKFMs or

the IT2TSKFMs) are automatically constructed and updated, according
the evaluation metrics. In the begin, all the modules of the HDFM
are initialed by the T1TSKFMs. Then, the 𝐼𝑛𝑑𝑒𝑥𝑘 is calculated for
everyone T1TSKFM. The corresponding T1TSKFM will be replaced by
the IT2TSKFM, if the 𝐼𝑛𝑑𝑒𝑥𝑘 exceeds the threshold. The process will
repeat in layer-by-layer way, until all the modules are successfully
updated.

4.2. Data-driven learning strategy of the HDFM

The data-driven learning flowchart of the proposed HDFM is shown
in Fig. 3. The flowchart mainly consists of the data generation block,
the fuzzy module design block, the stacked HDFM construction block,
and the hybrid structure optimization block.

Assume that, the input variables 𝐱 =
(

𝑥1, 𝑥2,… , 𝑥n
)T is derived from

ime series data (S(𝑡−𝑛),S(𝑡−𝑛+1),… ,S(𝑡−1)) the output 𝑦 is 𝑆(𝑡), then
he input–output data pair for the proposed HDFM can be expressed as

𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑛(𝑘); y(𝑘)
]

= [𝑆(𝑘), 𝑆(𝑘 + 1),… , 𝑆(𝑘 + 𝑛 − 1);𝑆(𝑘 + 𝑛)],

(4.9)

where 𝑘 = 1, 2,… , 𝑝, 𝑝 is the total number of training data pairs
generated from the data generation block.

The input layer can be denoted as the zero-layer, and the input–
output data pair of the 𝑖th fuzzy module is denoted as

𝑆0
𝑖 =

{

𝑥0𝑖 (𝑘), 𝑥
0
𝑖+1(𝑘),… , 𝑥0𝑖+𝐶−1(𝑘); 𝑦

0
𝑖 (𝑘)

}𝑝
𝑘=1 , (4.10)

where 𝑖 = 1, 2,… ,𝑀 − 𝐶 + 1.
In the stack layer, the output obtained from the input layer is

used as input for the current layer. The same process is repeated for
the subsequent layers, until to the last layer. And the corresponding
𝑀 − 2𝐶 + 2 fuzzy modules is constructed. The training data set for the
𝑖th fuzzy module in the 𝑙th layer is expressed as

𝐷𝑆𝑙
𝑖 =

{

𝑥𝑙𝑖(𝑘), 𝑥
𝑙
𝑖+1(𝑘),… , 𝑥𝑙𝑖+𝐶−1(𝑘); 𝑦

𝑙
𝑖(𝑘)

}𝑝
𝑘=1 , (4.11)

where 𝑖 = 1, 2,… ,𝑀 − 2𝐶 + 2, 𝑙 = 1, 2,… , 𝐿 and 𝐿 is the depth of the
stack layer.

In the dimension reduction layer, the width decreases with the
increase of the depth. Similarly, the training data set for the 𝑖th fuzzy
module in the ℎth layer is

𝐷𝑆ℎ
𝑖 =

{

𝑥ℎ𝑖 (𝑘), 𝑥
ℎ
𝑖+1(𝑘),… , 𝑥ℎ𝑖+𝐶−1(𝑘); 𝑦

ℎ
𝑖 (𝑘)

}𝑝
𝑘=1 , (4.12)

where 𝑖 = 1, 2,… ,𝑀 − 3𝐶 + 3, ℎ = 1, 2,… ,𝐻 , 𝐻 denotes the depth of
the dimension reduction layer, and 𝐻 = (𝑀 − 4𝐶 + 3)∕𝐶. There are 𝐶
fuzzy modules in the last layer of dimension reduction layer, and the
output set is
{

𝑦𝐻1 (𝑘), 𝑦𝐻2 (𝑘),… , 𝑦𝐻𝐶 (𝑘)
}𝑝
𝑘=1 . (4.13)
7

This will be accepted as the input data sequence for the output layer.
In the output layer, the final training dataset is represented as

𝐷𝑆Output =
{

𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝐶 (𝑘); 𝑦(𝑘)
}𝑝
𝑘=1 (4.14)

From Fig. 3, it can be clearly seen that the expected output data y
is considered in every layer for the training data. Hence, the proposed
stacked HDFM has stronger robustness. On the other hand, everyone
fuzzy module is optimized by the gradient descent based module op-
timization strategy, and is updated by the auto-construction strategy.
This will powerfully guarantee the overall outstanding performance of
the HDFM.

Even if one of the fuzzy modules fails, the output of the other TSKFM
will compensate for it to achieve high performance. The learning
algorithm of the proposed HDFM is given in algorithm 1.
Algorithm 1: The proposed HDFM Learning Algorithm
Require:

𝑊InputLayer : The width of Input Layer;
𝐷StackLayer : The depth of Stack Layer;
𝑀 : The input dimension of each T1TSKFM or IT2TSKFM;
𝑆(𝑡): The input time series;
𝑇 : Model learning times;

Initialize:
𝑊StackLayer ⟵ 𝑊InputLayer − 2𝑀 − 2
𝑊DRLayer ⟵ 𝑊InputLayer − 3𝑀 − 3; // This only represents the width of the first

layer
𝐷DRLayer ⟵

𝑊InputLayer−3𝑀−3
𝑀−1

𝑛 ⟵ 𝑊InputLayer +𝑊StackLayer ∗ 𝐷StackLayer + (
𝑊DRLayer−𝑀

𝑀 + 1) + 1; // The number
of All TSK-FSs

Random 𝑆𝑇 [𝑛]; // The structural parameters of HDFM is randomly initialized,
which value is chosen form {−1, 1}, and indicates type of TSK-FSs respectively.

Random 𝐽𝑁[𝑛]; // The structural indictors of HDFM is randomly initialized.
𝑡 ⟵ 0;

Compute:
Generate dataset of Input Layer, 𝐷𝑆0

𝑖 , with Eq.(4.4) and Eq.(4.5)
𝑖 = 1, 2, ...,𝑊InputLayer .

while 𝑡 < 𝑇 do
𝑡 ⟵ 𝑡 + 1;
for 𝑛 = 1, ...,𝑊InputLayer do

Train the 𝑛-th module in the input layer and compute its output;
update the partial indictors 𝚥𝑁[1 ∼ 𝑊InputLayer ];

end
Generate input dataset of Stack Layer from the output of all models of Input

Layer;
for 𝑚 = 1, ..., 𝐷StackLayer do

for 𝑛 = 1, ...,𝑊StackLayer do
Train the 𝑛-th module in the 𝑚-th Stack Layer and compute its

output;
end
update the partial indictors
𝐽𝑁[𝑊InputLayer + 1 ∼ 𝑊InputLayer + 1 +𝑊StackLayer ∗ 𝐷StackLayer ];

end
Generate input dataset of Dimension Reduction Layer from the Stack Layer;
for 𝑚 = 1, ..., 𝐷DRLayer do

𝑊DRLayer ⟵ 𝑊InputLayer − (3 + 𝑚) ∗ 𝑀 − (3 + 𝑚);
for 𝑛 = 1, ...,𝑊DRLayer do

Train the 𝑛-th module in the 𝑚-th Stack Layer and compute its
output;

end
update the partial indictors of 𝐽𝑁 ;

end
Generate input dataset of Output Layer from the Dimension Reduction Layer;
Train the last module in Output Layer and compute its output;
update the last indictors of 𝐽𝑁 ;
𝑁(𝜇, 𝜎) ∼ 𝐽𝑁 ; //Form a set of indicators into a normal distribution
for 𝑖 = 1, ..., 𝑛 do

if 𝐽𝑁[𝑖] < 𝜇 − 3𝜎 then
𝐽𝑁[𝑖] ←∼ 𝐽𝑁[𝑖];

end
end

end

4.3. Interpretability analysis for the proposed HDFM

The designed fuzzy modules (i.e., the T1TSKFM and the IT2TSKFM)
perfectly inherit the interpretability advantages (including the struc-
tural interpretability and the rule interpretability) of the fuzzy logic
system. Moreover, benefit from the stacked hierarchical structure, the
working process of the proposed HDFM can easily understand.
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Fig. 4. Structural interpretability of the designed IT2TSKFM.
Fig. 5. Schematic diagram of rule interpretability of the IT2TSKFM.

A. Interpretability of Structure
Taking the designed IT2TSKFM as an example, the hierarchical

structure consists of the input layer, the fuzzification layer, the interval
firing layer, the firing process layer, and the output layer, as shown
in Fig. 4. The input layer extracts the training/testing samples form
the source dataset and transforms those into the standard input style.
The fuzzification layer converts the extracted samples into the IT2FSs
using the single-valued fuzzifier. The interval-firing layer computes
the fired degree for each fuzzy rule and obtains the corresponding
interval fire degree. The firing process layer computes the normalized
firing degree of each fuzzy rule. The output layer gives the final crisp
output by BMM algorithm. Therefore, we can clearly interpret how the
IT2TSKFM works and understand how the data flows in the IT2TSKFM
in layer-by-layer way.

B. Interpretability of Rules
The characteristics of the TSK fuzzy rules naturally guarantee that

which rule is fired can be known clearly, and its firing degree can be
compute easily. Without loss of the generations, suppose that there are
8

two IT2FSs, then the fuzzy rules can be denoted as

𝑅𝑢𝑙𝑒𝑗𝑖 ∶ IF 𝑥1 is 𝑋1,𝑖 and 𝑥2 is 𝑋2,𝑗 THEN 𝑦r is
[

g
(

𝑥1, 𝑥2
)

, g
(

𝑥1, 𝑥2
)]𝑗

𝑖 ,

(4.15)

The fired interval weight is
[

g1
1
, g11

]

,
[

g2
1
, g21

]

,
[

g1
2
, g12

]

and
[

g2
2
, g22

]

, as

shown in Fig. 5. In addition the fired degree also can be easily calcu-
lated for the corresponding input variables, according to the designed
fuzzy rules. Consequently, the interpretability of the fuzzy modules is
clear.

Therefore, the proposed HDFM has better interpretability bene-
fitting from the module stacked architecture and the corresponding
interpretable components, i.e., the structural interpretability and the
rule interpretability. Thus, we can clearly observe how the data flows
and accurately locate which fuzzy rule is fired.

5. Experiments

In this section, the comparison models will be briefly introduced,
and then the performance evaluation indictors will be given. In ad-
dition, the proposed HDFM is applied in three different application
scenarios and the corresponding results are respectively analyzed.

5.1. Comparison models and evaluation indictors

A. Comparison Models
At present, many kinds of deep fuzzy systems have been pro-

posed, i.e., the DIRM-DFM (Li et al., 2020), the IT2DIRM-DFM (Peng
et al., 2021), and the prediction performance prior the FWSIRM-FM,
the SIRM-FM, and the SAE models. Hence, the DIRM-DFM and the
IT2DIRM-DFM models are taken as the comparison models. And, DCFS
and ANFIS are also considered as two common methods. In addition,
in order to further fully evaluate the performance of the proposed
HDFM, the pure interval type-2 deep fuzzy model (pIT2DFM) and
the pure type-1 deep fuzzy model (pT1DFM) are also considered as
the comparisons. The detailed configurations for the HDFM and its
comparisons are listed in Table 1.

B. Evaluation Indictors
In order to fully evaluated the performance of the proposed HDFM,

the root mean square error (RMSE), the mean absolute error (MAE),
the correlation coefficient (𝑅2), and the training time are chosen as the
evaluation indictors. And, the corresponding definitions are as follows

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

(

𝑦̂(j) − 𝑦(j)
)2, (5.1)
𝑗=1
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Fig. 6. The training and testing RMSEs of each modules of the proposed HDFM.
Fig. 7. The results of all models in experiment 1.
r

Table 1
The configuration of each model in Experiment 1.

Models nMFs No. of mod-
ules/nodes

MF 𝛼, 𝛽 epoch 𝜆 𝑃 𝛾 𝑁𝑏𝑠

HDFM 2 19 Gaussian 0.5 110 0.05 0.5 0.01 256
pIT2DFM 2 19 Gaussian 0.5 110 0.05 0.5 0.01 256
pT1DFM 2 19 Gaussian – 110 0.05 0.5 0.01 256
IT2DIRM-DFM 2 15 Triangular 0.5 – – – – –
DIRM-DFM 2 15 Triangular – – – – – –
ANFIS – 161 Triangular – 10 – – – –
DCFS 2 15 Triangular – – – – – –

MAE = 1
𝑛

𝑛
∑

j=1

|

|

|

𝑦̂(j) − 𝑦(j)||
|

, (5.2)

R2 = 1 −

∑n
j=1

|

|

|

𝑦(j) − 𝑦(j)||
|

2

∑n
j=1

|

|

𝑦(j) − 𝑦̄(j)|
|

2
. (5.3)

According to the definitions, we can clearly observe that the smaller
alue of the RMSE and MAE means the higher prediction accuracy,
nd the larger value of 𝑅2 indices the stronger fitting performance
f the model. Moreover, the smaller training time means the faster
onvergence of the model.

.2. PM2.5 prediction

A. dataset
The dataset consists of the weather data and the air pollution data

ollected by the American embassy in Beijing from 2010 to 2014. In
ddition, the resource dataset can be download from http://archive.
cs.uci.edu/ml/datasets/Beijing+PM2.5+Data For the HDFM and its
9

comparisons, 2400 samples are chosen as the train data, and 600
samples are used as the test data.

B. Model Configuration
In the experiment, the input layer of HDFM consists of 5 modules,

the stack layer consists of 8 modules in 2 layers, the dimension reduc-
tion layer consists of 5 modules in 2 layers, and the output layer consists
of 1 module in 1 layer. In other words, the HDFM model used in the
experiment consists of 19 modules.

As the Table 1 listed, nMFs represents the number of fuzzy sets
corresponding to each input, and MF represents the types of the mem-
bership functions. 𝛼 and 𝛽 are the parameter of BMM algorithm, epoch
represents the number of iterations of gradient descent algorithm, 𝜆
epresents the regularization coefficient, 𝑃 represents the DropRlue

rate, and 𝛾 represents the selected learning rate.
In fact, the DIRM-DFM proposed in Li et al. (2020) does not have

the stack layer. However, in order to ensure the rationality of the
comparison experiment as much as possible, the total number of layers
set in the experiment is consistent with that of other depth fuzzy system
models.

C. Result
In order to effectively help us understand the working details of

the designed fuzzy module at different levels, the optimized antecedent
and consequent parameters of the fuzzy rules based on the proposed
gradient descent algorithm are given in detail, as shown in Tables A.1
and A.2 respectively.

In addition, in order to demonstrate the effectiveness of the gradient
descent algorithm on the proposed fuzzy module, the RMSE iterative
process of the training and testing of the proposed HDFM is shown in
Fig. 6.

Fig. 6 respectively reflects the RMSE losses and the iterative process
of different modules at different layers. In both the training process
Fig. 6(a) and the testing process Fig. 6(b), it can be clearly observed
that the RMSE losses decrease rapidly with iteration, and the losses also

http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
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Fig. 8. Statistical results of all model performance indicators in experiment 1.
Table 2
Performance Indictors for each model in Experiment 1.

Model HDFM pT1DFM pIT2DFM ANFIS DCFS DIRM-DFM IT2DIRM-DFM

RMSE 20.088221 22.142541 18.777954 28.720478 25.857866 26.760593 25.071705
MAE 11.188253 14.072682 10.445991 17.649337 14.594523 15.919494 13.991901
R2 93.0138% 91.6091% 93.2796% 85.7186% 88.4354% 87.6048% 89.1174%
Training time(s) 14.652756 13.574561 17.995795 10.065363 2.366962 0.261919 0.938072
converge rapidly with the increase of HDFM depth. At the same time,
according to the observation, the final RMSE loss in the testing process
is smaller than that in the training process, which fully proves that the
developed optimization algorithm has an important improvement in the
generalization ability of the model.

In order to verify the validity of the proposed HDFM prediction,
the prediction results of HDFM and its comparison models are plotted
in Fig. 7(a), and the first 350 samples are replotted in Fig. 7(b) for a
clearer observation of the prediction effect. It can be clearly seen that
the proposed HDFM can effectively track the changing trend of PM2.5
index and achieve accurate prediction. The predicted effect was better
than that of DIRM-DFM, IT2DIRM-DFM, pT1DFM, ANFIS and DCFS,
and slightly worse than that of pIT2DFM.

In order to further accurately evaluate the predictive performance
and efficiency of the model, the numerical results of HDFM perfor-
mance indicators and their comparisons are shown in Table 2. To
further see the performance of the different models clearly, the visual-
ization results are shown in Fig. 8. It is easy to see that the prediction
accuracy of the proposed HDFM is better than that of DIRM-DFM,
IT2DIRM-DFM, pT1DFM, ANFIS and DCFS. While pIT2DFM had better
predictions and better fit, it had the worst training time of all the
10

models. As the proposed HDFM requires training modules’ parameters
iteratively, replacing module and updating architecture, the training
time for the proposed HDFM is not optimal. Nevertheless, the proposed
HDFM strikes a balance between predictive accuracy and training time.

Finally, the three-dimensional waterfall diagram of the absolute
errors between the predicted results of all models and the real values
in the testing process is provided, as shown in Fig. 9. In addition, the
absolute errors of 20 consecutive samples randomly selected are also
provided, as shown in Table 3.

5.3. PV power prediction

A. dataset
For the second experiment, we selected Belgian PV data, which can

be downloaded from https://www.elia.be/nl The PV data was collected
from March 1, 2019 to August 31, 2019 (a total of 184 days), and each
sample was sampled at a 15-minute interval. In the experiment, a total
of 8000 samples are used for the experiment, and the training set and
the testing set are divided by a ratio of 3:1.

B. Model Configuration
The detailed configuration of each model is similar to the con-

figuration listed in Table 1, except that the number of iterations is
modified(epoch = 120), and the two parameters of the BMM algorithm
are modified to 𝛼 = 0.3 and 𝛽 = 0.7.

https://www.elia.be/nl
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Fig. 9. The absolute errors of all models in experiment 1.
Table 3
The absolute errors of 20 consecutive samples randomly selected in Experiment 1.

Model HDFM pT1DFM pIT2DFM ANFIS DCFS DIRM-DFM IT2DIRM-DFM

1 20.6799079 28.3918854 17.6032628 25.3888031 12.4821605 24.73036237 27.83616571
2 1.87541927 8.25448587 0.03766287 21.0504107 0.91415521 1.395277177 0.85573294
3 14.7543207 6.11171505 9.49403661 20.7322101 9.92392296 18.51520281 16.65909469
4 23.5332439 16.9353231 17.5709822 3.04916347 16.4207883 32.3303837 24.66975833
5 4.61919008 0.2218127 1.13007908 13.2171888 3.17943699 17.72808738 6.743419204
6 4.0837492 9.1257503 5.87143063 1.55556171 3.94619655 3.150228548 7.79009248
7 1.6225419 8.26293745 3.37254002 7.73371442 2.81262159 2.083779755 4.826048317
8 0.42974761 6.55758629 2.26046911 5.59864562 2.98233254 4.660177943 0.614133551
9 0.16242619 7.15163065 3.26633911 1.46479523 4.36983206 4.618690926 1.176068084
10 10.2849446 17.5244639 13.4766035 20.9151352 14.7733329 5.892351936 12.10232859
11 8.48007818 17.2980479 10.8443991 20.6135649 10.3690632 8.204090038 13.73056436
12 12.7913589 22.7631215 16.9111373 27.730521 14.0572433 13.22473015 17.14432464
13 7.6964895 19.0754327 12.0431798 27.382938 8.12163157 11.21785153 12.43950416
14 8.41891765 20.6969797 14.9489711 28.8609917 9.72560736 12.37527372 14.25064272
15 25.6114132 38.8455627 32.7101529 50.8151398 23.3434534 31.96796617 35.75520826
16 24.9215206 41.6753637 31.3424252 45.4223545 27.2078485 41.37121469 46.89138428
17 0.80719846 19.0689147 9.16936186 19.268556 13.5228501 23.02203003 23.66729343
18 1.74365771 17.2440896 13.4432061 23.9995667 5.15560448 19.44135634 8.780341114
19 11.5556248 6.75818593 3.36831729 12.9652619 21.9556542 12.11065209 5.045854965
20 10.5883425 6.74082669 6.32718729 9.95287552 19.1805778 11.0816062 0.50246105
Table 4
Performance Indictors for each model in Experiment 2.

Model HDFM pT1DFM pIT2DFM ANFIS DCFS DIRM-DFM IT2DIRM-DFM

RMSE 33.136102 43.187805 31.397777 79.724196 66.474193 64.140267 50.320121
MAE 19.299784 23.535175 19.273752 48.962827 51.215905 40.720731 33.343199
R2 99.2101% 98.6595% 99.2906% 95.4264% 96.8223% 97.0397% 98.1780%
Training time(s) 18.804246 17.740819 23.889196 1.460595 0.396264 0.66143 3.560936
C. Result
Specifically, for HDFM, Tables A.3 and A.4 show the learning opti-

mal fuzzy rules of modules located in different layers.
In addition, the learning process of the rule parameters is shown in

Fig. 10, and the RMSE loss decreases continuously with the iteration
of the training process, which indicates that the developed gradient
descent algorithm has the property of fast convergence, and reflects the
effectiveness of the fuzzy system. The randomly initialized parameters
11
are constantly becoming accurate, and the predicted output of HDFM
is constantly close to the real output.

In order to verify the fitting effect and prediction performance of the
proposed HDFM, the prediction results of HDFM and its comparison
model are plotted in Fig. 11(a), and 140 samples are replotted in
Fig. 11(b) for a clearer observation of the prediction effect. It can be
clearly seen that all models in the experiment can effectively track
the change trend of photovoltaic energy generation, but there are
differences in the prediction accuracy.
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Fig. 10. The training and testing RMSEs of each modules of the proposed HDFM.

Fig. 11. The results of all models in experiment 2.

Fig. 12. Statistical results of all model performance indicators in experiment 2.
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Fig. 13. The absolute errors of all models in experiment 2.
Specifically, statistical indicators RMSE, MAE, 𝑅2, and training time
are shown in Table 4, and the corresponding visualization histogram is
shown in Fig. 12. Table 4 and Fig. 12 both reflect that the RMSE, MAE
and 𝑅2 indicators of the proposed HDFM model are better than those of
DIRM-DFM, IT2DIRM-DFM, pT1DFM, ANFIS and DCFS, but still slightly
worse than pIT2DFM. However, in terms of training time, as all mod-
ules of pIT2DFM are interval type-2 TSK fuzzy modules(IT2TSKFMs),
the complexity of the system determines that it needs longer training
time. The proposed HDFM is superior to pIT2DFM in this indicator.

Finally, in order to further analyze the differences in the predictive
performance of each model in this experiment, the absolute errors of
20 continuous samples were randomly selected and listed in Table 5.
And three-dimensional waterfall diagram of all test samples is drawn
to reflect the global error analysis effect, as shown in Fig. 13.

5.4. Energy consumption prediction

A. dataset
This dataset is related to power consumption of three different

distribution networks in the city of De Tuan in northern Morocco. The
open dataset used in the experiment was sampled at a frequency of
10 min. And, 3000 samples were used for training, 1000 samples were
used for testing. Dataset can be found from http://archive.ics.uci.edu/
ml/datasets/Power+consumption+of+Tetouan+city.

B. Model Configuration
The detailed configuration of all models is almost the same as that in

experiment 2, only the number of iterations is modified(epoch = 200),
and the parameter nMFs is modified to 3.

C. Result
In order to effectively help us understand the working details of

the designed fuzzy module at different levels, the antecedent and
13
consequent parameters of fuzzy rules are given in detail, as shown in
Tables A.5 and A.6 respectively.

In addition, in order to demonstrate the effectiveness of the gradient
descent algorithm with the Regularization, the DropRule and the Ad-
aBound on the proposed fuzzy module, the training and testing RMSEs
of the proposed HDFM is shown in Fig. 14.

Fig. 14 respectively reflects the decreasing process of RMSE losses
of each HDFM module in the training process and the testing process. It
can be clearly seen that the developed gradient descent algorithm with
the Regularization, the DropRule and the AdaBound can achieve fast
convergence of the fuzzy system and has strong generalization ability.
Secondly, it can be observed that the performance of the module of
the output layer (shown by Output Layer1-1 in Fig. 14) is not the best
during the training process, but its RMSE loss can be minimized during
the testing process.

In order to verify the effectiveness of the proposed prediction ca-
pability of HDFM, the prediction results of HDFM and its comparison
models are drawn in Fig. 15(a). According to the observation, almost
every model in the experiment can track the change trend of energy
consumption data. However, in order to observe the prediction effect
more clearly, we redraw the first 350 samples in Fig. 15(b). And, it
can be clearly seen that HDFM, pT1DFM and pIT2DFM optimized by
gradient descent algorithm have better prediction effect.

It is difficult to accurately measure the antecedent and consequent
of each model simply by observing the prediction curve. Here, we
further accurately evaluate the prediction performance of all models.
The numerical results of the performance indicators of HDFM and its
comparison methods are shown in Table 6. In order to visually observe
the differences in performance indicators of different models, the visual
results are shown in Fig. 16. It is easy to see that the prediction accuracy
of the proposed HDFM is better than that of DIRM-DFM, IT2DIRM-DFM,

http://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city
http://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city
http://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city
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Table 5
The absolute errors of 20 consecutive samples randomly selected in Experiment 2.

Model HDFM pT1DFM pIT2DFM ANFIS DCFS DIRM-DFM IT2DIRM-DFM

1 67.4747053 127.039044 92.6687117 181.844336 143.149248 149.6154077 111.123812
2 32.8254054 109.062774 64.4421123 204.724239 167.224388 186.9787661 87.66325918
3 3.8026523 96.9356469 42.2936802 180.618748 146.665255 144.2506845 23.34361181
4 9.64662286 112.450121 51.8895249 184.310428 131.012018 116.5173268 27.03398441
5 2.11039372 106.805087 42.5481045 161.507094 120.262404 107.5131957 44.73899462
6 19.3425163 128.19582 65.9594049 159.108202 135.688133 115.570651 69.59639627
7 23.9386835 77.560871 19.5131107 122.757449 107.736038 90.17373151 56.99781419
8 30.5670533 119.871129 72.2532555 142.413026 121.839821 85.76181936 90.44821853
9 38.7074387 93.6685612 46.7534627 134.982069 132.137042 118.0647807 119.3661812
10 59.8426916 93.1034242 59.7573249 149.657536 148.05456 121.8121107 157.7610436
11 69.4384572 63.1609841 80.1106389 43.9752524 24.0291304 4.851695323 55.10343682
12 3.97143733 12.7481078 4.68090531 21.1775916 15.5779799 69.27927357 18.71585069
13 2.49633177 20.6623577 4.10022245 27.3198002 10.2483354 3.221974439 47.71982092
14 24.08586024 9.9951501 23.4152845 39.7133886 30.0238825 21.4613319 81.48723918
15 49.6727299 74.1391567 48.6604789 34.3679817 84.7194465 78.85060156 129.9718946
16 25.3693062 33.2750572 16.366493 48.8678735 93.1104143 84.86558088 132.7605796
17 44.0937264 30.7160878 24.4756975 87.2669019 96.3387661 70.22364752 113.0132833
18 87.1191207 117.380847 115.546983 40.804853 35.2846302 53.95601224 34.14809436
19 73.1151984 69.8202144 58.1183306 30.1626407 20.970156 30.72544595 38.73721238
20 80.1519867 83.783714 95.2851705 96.2603148 42.803167 8.631554251 2.085682246
Fig. 14. The training and testing RMSEs of each modules of the proposed HDFM.
Fig. 15. The results of all models in experiment 3.
Table 6
Performance Indictors for each model in Experiment 3.

Model HDFM pT1DFM pIT2DFM ANFIS DCFS DIRM-DFM IT2DIRM-DFM

RMSE 0.481945 0.536011 0.4471 1.012312 0.768686 0.807147 0.585615
MAE 0.343559 0.392338 0.288902 0.709316 0.578956 0.511931 0.40001
R2 98.8038% 98.5281% 98.9705% 94.7224% 96.9575% 96.6447% 98.2338%
Training time(s) 34.804313 31.002932 37.285584 12.752908 0.244665 0.278579 1.435145
14
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Fig. 16. Statistical results of all model performance indicators in experiment 3.
pT1DFM, ANFIS and DCFS. While pIT2DFM had better predictions and
better fit, it had the worst training time of all the models.

For a single sample, the absolute errors between the predicted
value and the real value is shown in Table 7. The absolute errors of
all samples will be shown by three-dimensional waterfall diagram, as
shown in Fig. 17.

In this experiments, some key hyperparameters are chosen to test
the robustness of HDFM. In addition, some less important parameters,
such as 𝛼 and 𝛽 in the BMM method, are not discussed. As shown in
Fig. 18, within a certain range of 𝑁𝑏𝑠, 𝑃 , 𝛾 and 𝐿, the proposed HDFM
can maintain good predictive performance and generalization ability.

5.5. Summary and discussion

In the previous section, the proposed HDFM and comparison models
were applied to three independent experiments in different scenarios,
and the statistical results of each model were demonstrated in the form
of graphs. Here, the above experimental results are summarized and
discussed in more detail.

• From the process of RMSE loss iteration (Figs. 6, 10, 14), it
can be seen that the gradient descent optimization algorithm
developed in this study for deep fuzzy system can achieve fast
convergence and improve the generalization performance of the
proposed HDFM. According to the loss iteration diagram of dif-
ferent modules, it can be found that the input-hidden-output
network structure of HDFM realizes the gradual approximation
to the expected output. The output generated by each layer is
a weak approximation to the expected output. And this weak
approximation is passed as input to the next layer. In this stacking
15

process, the approximation to the desired output is gradually
strengthened. In the end, the best output is obtained in the output
layer. These information are reflected in Figs. 6, 10, 14, the
testing RMSE of the fuzzy module tends to decrease as the depth
increases, and the fuzzy module at the output layer obtains the
lowest RMSE.

• As shown in Tables 2, 4 and 6, the proposed HDFM and its
pure versions (pT1DFM and pIT2DFM) are superior to the AN-
FIS, the DCFS, the DIRM-DFM and the IT2DIRM-DFM models in
three statistical indicators, RMSE, MAE and 𝑅2. Taking the RMSE
indicator as an example, compared with the above models, it
increased by 30.0561%, 22.3129%, 24.9336% and 19.8769% re-
spectively in experiment 1 and 58.4366%, 50.1519%, 48.3381%
and 34.1493% respectively in experiment 2. In experiment 3,
compared with the above models, the increases were 52.3916%,
37.3027%, 40.2903% and 17.7027%, respectively.

• In the comparison of the three deep fuzzy systems proposed
in this paper, according to Figs. 8, 12 and 16, it can be seen
intuitively that the HDFM, as a hybrid model, improves the
prediction accuracy and needs more training time compared with
pT1DFM. Compared with pIT2DFM, it saves more training time
and sacrifices less precision. Specifically taking Experiment 1 as
an example, the HDFM’s 𝑅2 improves 1.5333% compared with
pT1DFM, and correspondingly only loses 7.9427% in terms of
time. However, it takes the pIT2DFM 18.5767% longer training
time than the HDFM to improve the 𝑅2 indicator by 0.2849%.

6. Conclusions

Inspired by the neural network structure and the idea of parameter

optimization, firstly, T1TSKFM and IT2TSKFM are given. Secondly, a
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Fig. 17. The absolute errors of all models in experiment 3.
Table 7
The absolute errors of 20 consecutive samples randomly selected in Experiment 3.

Model HDFM pT1DFM pIT2DFM ANFIS DCFS DIRM-DFM IT2DIRM-DFM

1 0.07108728 0.22543513 0.01358658 0.11642098 0.18688408 0.204392146 0.036231505
2 0.16054465 0.30013853 0.08421587 0.02678719 0.31010723 0.033596235 0.141112655
3 0.00269676 0.12137022 0.09342165 0.1562334 0.20411913 0.1358228 0.002195088
4 0.14210437 0.30780727 0.10228551 0.01623085 0.29745328 0.125893297 0.066608076
5 0.17530545 0.29715662 0.08017912 0.04798239 0.38436207 0.051208183 0.192241427
6 0.01688854 0.13597745 0.075423 0.12736449 0.2444917 0.121937201 0.002851593
7 0.1981501 0.3604558 0.15355892 0.08149391 0.36552876 0.056866422 0.115399885
8 0.15484145 0.26187713 0.04233688 0.02421321 0.38436862 0.067842715 0.176738542
9 0.35824261 0.48352896 0.27328167 0.27947076 0.57259402 0.189448673 0.305423498
10 0.31962304 0.38580209 0.15384699 0.21579109 0.58952763 0.314729073 0.297701254
11 0.17205705 0.25323012 0.0232251 0.1452337 0.39218158 0.074155896 0.041285507
12 0.76609142 0.87016818 0.63574389 0.81818061 0.86154571 0.554749805 0.567659156
13 0.50598492 0.53160184 0.25791998 0.60097705 0.82080307 0.825385396 0.56219404
14 0.0581224 0.14295056 0.12290157 0.38917943 0.02343325 0.085885838 0.204872129
15 0.02575412 0.10443271 0.17957438 0.22509162 0.50611291 0.347401807 0.482154067
16 0.08078572 0.21229255 0.06149927 0.19463507 0.47465326 0.289465487 0.22374641
17 0.031471 0.07580262 0.18887325 0.00881688 0.45260133 0.308326599 0.195703465
18 0.09916048 0.02496268 0.22287571 0.36039409 0.45647792 0.487266437 0.312551919
19 0.352691 0.20752173 0.44298912 0.79299079 0.59681312 0.76400142 0.521198441
20 0.90922355 0.67262707 0.87617122 1.37187215 1.08418886 1.455450421 1.019692914
novel hybrid deep fuzzy system structure is presented. In order to accel-
erate parameter optimization and model convergence, 𝑙2 regularization
function is designed, the gradient descent with the Regularization, the
DropRule and the AdaBound algorithms is given. Finally, a detailed
data-driven model strategy is introduced. In this study, the strategy
16
used for training parameters of large deep neural networks is applied
to the TSK fuzzy system, which realizes effective convergence and
accurate optimization of parameter solving. And, this strategy improves
the prediction accuracy and generalization performance of the TSK
fuzzy system. In order to further increase the complexity of the model
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Fig. 18. Test RMSEs of HDFM w.r.t. different hyperparameters in Experiment 3. (a) Different batch size 𝑁𝑏𝑠; (b) different DropRule rate 𝑃 ; (c) different initial learning rate 𝛾;
d) different depth L of the stack layer of HDFM. In each subfigure, the configuration of other parameters is consistent with Table 1,.
nd deal with nonlinear and high randomness problems. This work
roposes a novel stack hybrid deep fuzzy model(HDFM), and gives the
ptimization strategy of the hybrid structure and data driven learning
trategy. The proposed HDFM is implemented by stacking TSK fuzzy
odules layer by layer from bottom to top. The depth and width of the
ybrid deep fuzzy model are adaptive and easy to change. Thanks to the
odular design idea, the model effectively avoids the negative impact

f rule explosion and has good interpretability. Experimental results
n three public datasets show that HDFM, a novel hybrid deep fuzzy
odel proposed in this study, has better generalization performance

nd prediction accuracy, which has certain research value.
In future work, on the one hand, we will try to find other advanced

ptimization algorithms to further improve the performance of the
roposed HDFM. On the other hand, other network architecture forms
f deep fuzzy systems will also be considered.
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Table A.1
Optimized antecedent parameters in Experiment 1.

Input 1 Input 2

𝑚1,1 𝜎1,1 𝜎̄1,1 𝑚1,2 𝜎1,2 𝜎̄1,2 𝑚2,1 𝜎2,1 𝜎̄2,1 𝑚2,2 𝜎2,2 𝜎̄2,2

I-11 −0.01918 1.88628 0.00000 19.72031 1.70600 0.00000 0.16736 1.70600 0.00000 19.89788 2.81046 0.00000
I-12 −0.00270 1.74641 1.29748 19.66017 2.41605 1.76427 0.24163 1.86398 1.07944 19.92352 1.70583 1.02350
I-13 0.24035 1.80917 1.11351 19.94723 2.37406 2.08736 −0.02279 1.88863 1.17341 19.68028 1.70968 1.02334
I-14 0.15481 1.85912 0.00000 19.77210 1.70516 0.00000 0.29346 1.70765 0.00000 20.00650 2.58943 0.00000
I-15 0.21258 1.86690 1.02305 19.96722 1.70508 1.22169 0.21258 1.70508 3.52536 19.96722 2.29741 3.01208

S-11 0.51126 1.11524 0.00000 15.05414 1.39179 0.00000 0.41299 1.39329 0.00000 11.62221 1.15214 0.00000
S-12 0.39022 1.68332 0.00000 11.68017 1.36528 0.00000 0.23647 1.77448 0.00000 10.04979 1.23503 0.00000
S-13 0.42440 1.57890 1.04678 10.21054 1.38225 0.81257 0.27280 1.35736 0.96898 11.62183 1.71526 1.13894
S-14 0.02705 1.49480 0.82866 11.35550 1.48659 0.97293 −0.25516 1.44785 1.06590 12.53386 1.60281 1.06912

S-21 0.43492 1.21793 0.00000 8.99391 1.54099 0.00000 0.26153 1.82943 0.00000 9.33723 1.24137 0.00000
S-22 0.47488 1.77615 1.46456 9.52432 1.43671 0.76708 0.01665 1.27846 1.61212 12.29847 1.85567 0.83758
S-23 0.02448 1.70646 1.39682 12.33188 1.37117 0.86551 0.25190 1.43770 0.89885 11.56388 1.90013 2.14571
S-24 0.19987 1.52681 0.94811 11.55348 1.50663 1.04254 −0.01347 1.90649 0.91735 19.71351 1.67860 1.13131

R-11 0.32496 1.55103 0.00000 9.13945 1.28883 0.00000 0.15488 1.42076 0.00000 12.69629 1.53340 0.00000
R-12 0.04177 1.54596 1.26616 12.58932 1.46908 0.88245 −0.17697 1.34156 1.10682 8.74405 2.28595 1.45140
R-13 0.25678 1.40097 0.94421 9.24761 1.75570 0.98409 0.02548 1.97204 1.15021 14.16117 1.39632 0.83779

R-21 0.50028 1.90267 2.11384 9.25511 1.33586 0.81122 0.07499 1.56693 0.86923 8.30488 1.47845 0.98041
R-22 −0.22999 1.42040 0.83181 8.02144 1.75162 1.04970 0.10964 1.66198 1.07843 11.68972 1.38486 0.97096

O-11 −0.17524 1.54073 1.26293 8.19362 1.84123 1.20714 0.22618 1.97091 1.44704 8.78537 1.37861 1.12532
Table A.2
Optimized consequent parameters in Experiment 1.

The 1-th rule The 2-th rule

𝜔1,0 𝜔1,1 𝜔1,2 𝜔̄1,0 𝜔̄1,1 𝜔̄1,2 𝜔2,0 𝜔2,1 𝜔2,2 𝜔̄2,0 𝜔̄2,1 𝜔̄2,2

I-11 0.5282 0.0795 0.7175 0.0000 0.0000 0.0000 0.7696 0.4535 0.1621 0.0000 0.0000 0.0000
I-12 0.0894 0.1560 1.5658 0.8279 −0.0535 −0.1245 1.3366 1.2207 0.5754 −0.2570 −0.1852 −0.2267
I-13 0.8859 0.5288 0.4798 −0.1840 −0.2741 1.0612 1.1109 0.7311 0.3081 −0.1237 0.2636 0.2878
I-14 0.2257 0.1598 0.7103 0.0000 0.0000 0.0000 0.3438 0.4137 0.4028 0.0000 0.0000 0.0000
I-15 −0.0572 0.2082 1.1304 0.2179 0.0781 0.3680 −0.1268 0.6221 0.6880 0.4832 0.3379 0.0267

S-11 −0.2322 −0.0898 0.1732 0.0000 0.0000 0.0000 0.5612 0.1802 0.5389 0.0000 0.0000 0.0000
S-12 −0.0522 0.0659 0.9488 0.0000 0.0000 0.0000 0.1268 0.8757 0.2199 0.0000 0.0000 0.0000
S-13 −0.0357 −0.2162 1.0346 −0.2685 0.8210 0.4912 0.7350 −0.4273 0.6448 −0.7078 0.8322 1.0171
S-14 0.4330 −0.0420 0.4455 −0.5846 0.3032 1.5775 0.5106 0.4006 0.5161 0.3247 −0.1991 1.0303

S-21 −0.0764 0.0885 0.9466 0.0000 0.0000 0.0000 −0.0764 0.2965 0.7942 0.0000 0.0000 0.0000
S-22 −0.0701 0.8861 0.1595 −0.1657 −0.1940 1.2994 0.7422 −0.0167 0.9377 0.0556 −0.1333 0.9021
S-23 0.1118 0.1900 0.7872 −0.2548 0.0310 1.1332 0.0750 0.3812 0.5346 −0.0438 0.4472 0.6789
S-24 0.3060 −0.1757 1.0881 −0.0134 0.1958 0.8938 0.1602 1.1880 0.8289 0.1111 −0.0115 −0.3279

R-11 −0.1093 0.1030 0.9317 0.0000 0.0000 0.0000 −0.0171 −0.0034 1.0244 0.0000 0.0000 0.0000
R-12 0.0052 0.4145 0.3132 −0.1117 −0.2572 1.4429 0.0285 0.1886 1.3355 0.1548 0.2648 0.1255
R-13 −0.4919 0.5914 0.6340 0.1032 0.3075 0.7057 0.0238 −0.1831 0.1245 0.3318 0.6255 1.4348

R-21 −0.6795 −0.3636 1.1185 0.3123 0.4625 0.8418 −0.2745 0.1160 0.4531 0.3536 −0.0803 1.5453
R-22 0.4401 0.2917 0.7072 −0.5790 0.2507 0.8317 −0.5594 0.3359 0.7278 0.5192 0.7410 0.1461

O-11 −0.3453 0.1319 1.2270 0.3540 −0.5135 1.1392 0.4071 0.7195 −0.3185 0.2954 0.4283 0.9142

The 3-th rule The 4-th rule

𝜔3,0 𝜔3,1 𝜔3,2 𝜔̄3,0 𝜔̄3,1 𝜔̄3,2 𝜔4,0 𝜔4,1 𝜔4,2 𝜔̄4,0 𝜔̄4,1 𝜔̄4,2

I-11 0.6088 0.0681 0.5459 0.0000 0.0000 0.0000 0.0673 0.4212 0.6073 0.0000 0.0000 0.0000
I-12 0.7776 0.1859 0.2527 0.2148 −0.0562 1.1814 −0.1845 0.8368 −0.3016 0.4876 0.6188 −0.0730
I-13 0.6300 0.6398 0.6892 −0.0243 −0.5349 0.8104 0.8677 0.1710 1.0365 0.8888 0.1445 −0.2588
I-14 0.3581 0.2249 0.8277 0.0000 0.0000 0.0000 0.5890 0.0983 0.4823 0.0000 0.0000 0.0000
I-15 0.3919 0.5326 1.2257 0.4379 −0.0459 −0.0242 1.0557 0.2122 0.9155 0.2467 0.0984 −0.0136

S-11 0.0249 0.0661 0.9804 0.0000 0.0000 0.0000 0.6345 0.3305 0.3384 0.0000 0.0000 0.0000
S-12 −0.0114 0.3171 0.6489 0.0000 0.0000 0.0000 0.0294 0.2058 0.8255 0.0000 0.0000 0.0000
S-13 0.6633 −0.0963 0.2482 −0.5138 0.2482 1.5247 0.9191 −0.3042 0.5307 −0.3890 0.5075 1.0003
S-14 −0.0687 0.8869 −0.2082 −0.1218 −0.1367 1.5372 0.6900 0.6360 0.4063 −0.4919 0.3720 0.5915

S-21 0.0499 0.5600 0.4376 0.0000 0.0000 0.0000 0.1677 −0.1156 1.1071 0.0000 0.0000 0.0000
S-22 0.2676 −0.0042 0.9041 −0.3503 0.5375 0.6481 −0.1826 0.8338 0.1062 0.6915 −0.0284 0.7580
S-23 0.6904 0.5007 0.1937 0.0851 0.4223 0.4383 0.1177 −0.3347 0.9159 0.4113 0.5852 0.5707
S-24 −0.6632 0.1499 0.5797 0.7930 1.0686 0.1597 −0.2827 0.6879 −0.1506 1.0245 0.7087 0.4464

R-11 0.0306 0.4529 0.5527 0.0000 0.0000 0.0000 0.0825 0.7534 0.1948 0.0000 0.0000 0.0000
R-12 0.6207 −0.0249 1.4598 −0.0339 0.2309 −0.0593 −0.0422 0.8672 0.9101 −0.0714 0.3587 −0.1374
R-13 −0.9030 0.7300 0.5815 0.6601 −0.1598 0.9171 1.0966 0.1059 0.6310 −0.6233 1.4241 −0.3468

R-21 0.8973 −0.0898 0.6998 0.1633 0.3000 0.7017 1.0148 −0.0294 0.4362 −0.0095 0.3263 1.0488
R-22 0.0327 0.6835 1.1012 −0.2469 −0.0378 0.3301 0.3298 0.8401 0.1207 0.2442 0.0891 0.7209

O-11 0.3384 0.7139 0.7823 −0.1973 −0.0666 0.4898 −0.4141 1.3360 0.6105 0.1322 −0.0842 0.2625
18
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Table A.3
Optimized antecedent parameters in Experiment 2.

Input 1 Input 2

𝑚1,1 𝜎1,1 𝜎̄1,1 𝑚1,2 𝜎1,2 𝜎̄1,2 𝑚2,1 𝜎2,1 𝜎̄2,1 𝑚2,2 𝜎2,1 𝜎̄2,1

I-11 0.92878 6.21740 4.18601 20.92829 5.01655 3.02985 −0.16959 5.01655 3.07279 19.92097 5.10183 3.48819
I-12 0.72584 6.48793 0.00000 20.54881 5.03409 0.00000 0.56891 6.23408 0.00000 20.42881 5.05494 0.00000
I-13 0.17881 5.14543 3.37668 20.13237 5.17047 3.03421 0.15256 5.09376 3.36436 20.14997 5.02061 3.03604
I-14 0.41913 5.91012 0.00000 20.24460 5.05354 0.00000 0.93345 6.92305 0.00000 20.79555 5.01598 0.00000
I-15 −0.16566 5.01705 3.29659 19.89546 5.35001 3.15482 0.14637 5.01966 3.26007 20.20135 5.01578 3.12444

S-11 −1.47314 4.60185 2.77532 19.01987 4.85240 3.65357 −1.14271 4.96502 3.24153 20.68090 5.02683 2.94780
S-12 −0.60801 6.41894 0.00000 21.25259 4.90243 0.00000 −0.75721 6.00637 0.00000 20.47552 4.80259 0.00000
S-13 −1.34270 4.91388 3.04060 20.04858 5.20383 2.91891 −1.19737 4.85093 2.99164 21.10055 4.85093 3.11411
S-14 −1.49542 5.20848 0.82866 20.65026 5.90624 0.97293 0.18563 5.51543 1.06590 23.46545 5.06991 1.06912

S-21 −0.44531 5.52457 0.00000 21.34928 4.86587 0.00000 −0.65344 5.03791 0.00000 21.12941 5.36487 0.00000
S-22 −0.61536 5.08640 0.00000 21.20777 5.08180 0.00000 −0.60606 5.08397 0.00000 20.71637 5.84396 0.00000
S-23 −0.58767 4.99267 3.09406 20.93077 4.96321 3.24767 −0.44565 4.95889 2.99873 23.75410 5.44410 3.22900
S-24 0.35748 5.86207 4.04942 24.59490 5.00391 3.04304 0.29246 5.36778 3.09818 20.24815 5.00391 3.04954

R-11 −0.91028 4.94046 0.00000 21.20072 5.21019 0.00000 −0.40358 5.10940 0.00000 24.04453 4.97863 0.00000
R-12 −1.00286 4.93584 3.04326 23.59413 5.63655 3.42994 0.04066 5.66102 3.65279 21.80994 4.93670 2.96331
R-13 0.00949 5.83229 0.00000 21.71007 4.99733 0.00000 0.57881 6.68169 0.00000 20.38438 4.97452 0.00000

R-21 1.16292 8.64659 0.00000 23.65536 5.10991 0.00000 0.15617 6.58971 0.00000 22.08906 4.94629 0.00000
R-22 −0.47773 5.49958 0.00000 21.53236 5.66371 0.00000 −0.22386 5.10796 0.00000 20.56074 5.57747 0.00000

O-11 −0.37018 5.06681 0.00000 28.21539 5.10468 0.00000 0.06195 5.39148 0.00000 20.78743 4.94124 0.00000
Table A.4
Optimized consequent parameters in Experiment 2.

The 1-th rule The 2-th rule

𝜔1,0 𝜔1,1 𝜔1,2 𝜔̄1,0 𝜔̄1,1 𝜔̄1,2 𝜔2,0 𝜔2,1 𝜔2,2 𝜔̄2,0 𝜔̄2,1 𝜔̄2,2

I-11 0.4188 −1.2300 1.7935 0.3415 −1.9618 2.9305 0.0653 0.0041 0.8902 0.5475 −1.7428 2.5070
I-12 0.2125 −1.7485 2.7555 0.0000 0.0000 0.0000 0.3200 −1.1637 2.0523 0.0000 0.0000 0.0000
I-13 −0.6674 0.1480 0.1740 0.4648 −1.5152 2.7928 −0.1153 −1.0508 0.5753 0.3484 −0.0482 1.5017
I-14 0.0917 −0.9027 2.0185 0.0000 0.0000 0.0000 0.0967 −0.0770 0.9920 0.0000 0.0000 0.0000
I-15 0.1267 −0.4731 0.9094 −0.0101 0.0007 1.2614 0.1206 −0.4771 0.4320 −0.0356 0.4714 0.9239

S-11 −0.4691 −0.3671 0.9738 0.1389 0.2680 0.8941 0.2277 −0.5484 0.8860 −0.2421 0.6112 0.6018
S-12 −0.0256 0.2244 0.7728 0.0000 0.0000 0.0000 −0.0417 0.2098 0.7781 0.0000 0.0000 0.0000
S-13 −0.4715 0.2557 −0.0428 0.1422 0.0646 1.4245 0.3009 −0.4223 0.1014 −0.0816 0.5737 1.0648
S-14 −0.0008 −0.0403 1.0146 0.0000 0.0000 0.0000 0.0017 −0.0175 0.9939 0.0000 0.0000 0.0000

S-21 −0.0065 −0.0881 1.0378 0.0000 0.0000 0.0000 0.0237 0.1153 0.9288 0.0000 0.0000 0.0000
S-22 0.0088 −0.1568 1.0699 0.0000 0.0000 0.0000 −0.0094 −0.0501 1.0064 0.0000 0.0000 0.0000
S-23 −0.2350 0.5013 0.0728 0.1055 −0.3426 1.5307 −0.3499 −0.0033 0.7946 0.0621 0.4500 0.5920
S-24 −0.1780 0.1016 0.6611 0.0840 −0.0035 1.1233 0.5839 −0.2389 0.7340 −0.2194 0.4550 0.7424

R-11 −0.0371 −0.0251 0.9723 0.0000 0.0000 0.0000 0.0110 0.2202 0.8039 0.0000 0.0000 0.0000
R-12 −0.5576 −0.7354 0.7660 0.2658 0.2145 1.1715 −0.3889 0.8165 −0.2643 0.1556 −0.2097 1.4047
R-13 0.0156 0.1814 0.7899 0.0000 0.0000 0.0000 −0.0039 0.8591 0.0954 0.0000 0.0000 0.0000

R-21 0.0160 −0.0729 1.0980 0.0000 0.0000 0.0000 0.0266 0.0179 0.9856 0.0000 0.0000 0.0000
R-22 −0.0032 0.4403 0.5642 0.0000 0.0000 0.0000 0.0185 0.0310 1.0561 0.0000 0.0000 0.0000

O-11 −0.0102 0.3271 0.6483 0.0000 0.0000 0.0000 −0.0062 0.1387 0.8114 0.0000 0.0000 0.0000

The 3-th rule The 4-th rule

𝜔3,0 𝜔3,1 𝜔3,2 𝜔̄3,0 𝜔̄3,1 𝜔̄3,2 𝜔4,0 𝜔4,1 𝜔4,2 𝜔̄4,0 𝜔̄4,1 𝜔̄4,2

I-11 −0.8051 −0.1858 0.1244 0.8658 −0.4814 1.6465 −0.1663 0.1859 0.8732 0.6090 −0.7418 1.5525
I-12 0.2312 −1.0566 1.9838 0.0000 0.0000 0.0000 0.2386 −0.3581 1.3147 0.0000 0.0000 0.0000
I-13 0.4893 −0.6837 0.9134 −0.1584 0.1138 1.0497 −0.3455 −0.1434 0.7292 −0.0123 −0.0255 1.0986
I-14 0.0557 −0.3538 1.3723 0.0000 0.0000 0.0000 0.1800 0.0113 0.8803 0.0000 0.0000 0.0000
I-15 0.6362 −0.0598 0.5047 −0.2490 0.0050 1.2342 −0.0046 0.4513 0.4119 0.0436 −0.2282 1.3292

S-11 −0.0960 0.0844 0.2951 −0.0957 0.2951 0.9332 0.5665 −0.5296 0.8009 −0.3709 0.7500 0.6151
S-12 −0.0148 0.1308 0.9074 0.0000 0.0000 0.0000 −0.0938 0.1874 0.8528 0.0000 0.0000 0.0000
S-13 0.0337 −0.4477 0.4628 −0.0813 0.5141 0.9311 −0.5036 0.4317 −0.3327 0.2592 0.2548 1.0847
S-14 0.0078 −0.0105 1.0272 0.0000 0.0000 0.0000 0.0232 0.1774 0.8063 0.0000 0.0000 0.0000

S-21 −0.0022 0.1656 0.9311 0.0000 0.0000 0.0000 0.1949 0.1747 0.7544 0.0000 0.0000 0.0000
S-22 −0.0276 0.1710 0.6442 0.0000 0.0000 0.0000 0.0000 0.2011 0.8476 0.0000 0.0000 0.0000
S-23 0.4787 1.2614 −0.6127 −0.1637 −0.3288 1.4975 0.7858 0.3026 0.2663 −0.3880 0.1480 0.9585
S-24 −0.5670 0.0196 0.6002 0.2198 0.0529 1.0689 1.1855 0.2938 −0.0179 −0.6510 0.2063 1.0426

R-11 −0.0357 0.1694 0.7461 0.0000 0.0000 0.0000 −0.1042 0.4598 0.5699 0.0000 0.0000 0.0000
R-12 0.1641 −0.2642 0.4429 −0.0371 0.2735 1.0529 −0.4007 0.2521 0.2473 −0.0863 0.2115 1.0730
R-13 0.0279 0.1857 0.7781 0.0000 0.0000 0.0000 −0.0105 0.1896 0.7998 0.0000 0.0000 0.0000

R-21 0.0078 −0.0157 0.9587 0.0000 0.0000 0.0000 0.0348 0.0960 0.9215 0.0000 0.0000 0.0000
R-22 0.0181 0.7473 0.2675 0.0000 0.0000 0.0000 0.1845 0.2000 0.7777 0.0000 0.0000 0.0000

O-11 −0.0137 0.0597 0.8798 0.0000 0.0000 0.0000 0.0952 0.3396 0.7151 0.0000 0.0000 0.0000
19
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Table A.5
Optimized antecedent parameters in Experiment 3.

Input 1 Input 2

𝑚1,1 𝜎1,1 𝜎̄1,1 𝑚1,2 𝜎1,2 𝜎̄1,2 𝑚2,1 𝜎2,1 𝜎̄2,1 𝑚2,2 𝜎2,1 𝜎̄2,1

I-11 1.40288 2.11919 1.37366 10.23101 2.29749 1.96052 2.45031 2.63442 2.48064 10.74982 2.34651 1.27151
I-12 2.06049 2.44210 0.00000 10.43324 2.50311 0.00000 2.99464 4.34986 0.00000 11.10245 2.32252 0.00000
I-13 2.28725 2.80295 0.00000 10.49115 2.58045 0.00000 2.32071 2.96513 0.00000 10.44269 2.45734 0.00000
I-14 2.24582 2.78630 0.00000 10.48038 2.72759 0.00000 1.73754 2.12342 0.00000 10.27022 2.72559 0.00000
I-15 0.75804 2.16184 0.00000 9.18770 5.00243 0.00000 2.84288 4.24776 0.00000 10.44990 3.14525 0.00000

S-11 2.33434 2.69418 2.03542 10.85632 1.97127 1.18276 2.03509 2.15295 1.28825 10.68302 2.37737 1.57424
S-12 2.32970 2.65024 0.00000 10.94343 2.13719 0.00000 1.98549 2.05357 0.00000 10.49317 2.45491 0.00000
S-13 2.71472 3.30341 1.71176 11.14851 2.28409 1.22903 1.84138 2.37097 1.23358 10.40742 2.94507 1.59170
S-14 1.72669 2.07811 1.24687 10.33173 2.74457 2.09341 2.59511 2.83659 2.38348 11.14982 2.07811 1.27251

S-21 0.79071 2.04073 1.23979 10.23140 3.38424 2.92160 3.09375 3.62263 3.11712 11.77367 2.02848 1.21890
S-22 1.68981 2.05393 0.00000 10.53252 2.79766 0.00000 2.68235 3.94902 0.00000 11.59900 2.05393 0.00000
S-23 2.54570 3.00809 2.93099 11.33455 2.10585 1.28767 1.24866 2.13318 1.26351 9.90804 3.15347 2.82235
S-24 3.59383 5.39714 0.00000 12.11748 2.12096 0.00000 1.68009 2.38020 0.00000 10.11705 3.28381 0.00000

R-11 1.38494 2.04278 1.28530 10.33411 3.13049 2.45226 2.18242 2.33984 1.86801 11.04051 2.42411 1.23944
R-12 0.98128 2.09974 0.00000 10.04847 4.24432 0.00000 2.85689 4.09696 0.00000 11.11380 2.46010 0.00000
R-13 2.90289 4.02272 0.00000 11.30268 2.10762 0.00000 1.35546 2.17592 0.00000 10.12070 3.86557 0.00000

R-21 2.11246 2.22068 0.00000 10.80650 2.08022 0.00000 2.25545 2.40719 0.00000 10.89074 2.11495 0.00000
R-22 2.22004 2.35993 0.00000 10.54374 2.42113 0.00000 2.03560 2.27649 0.00000 10.86756 2.47930 0.00000

O-11 3.17693 3.66085 3.35110 11.72851 2.09259 1.25744 1.27847 2.11830 1.25559 10.09660 2.96365 2.69963
Table A.6
Optimized consequent parameters in Experiment 3.

The 1-th rule The 2-th rule

𝜔1,0 𝜔1,1 𝜔1,2 𝜔̄1,0 𝜔̄1,1 𝜔̄1,2 𝜔2,0 𝜔2,1 𝜔2,2 𝜔̄2,0 𝜔̄2,1 𝜔̄2,2

I-11 −0.3362 0.8430 0.5677 0.7582 −0.7151 1.4417 0.4326 0.8102 0.8157 0.7699 −0.1060 0.7009
I-12 0.3734 −0.7757 1.7092 0.0000 0.0000 0.0000 0.5833 −0.6824 1.6047 0.0000 0.0000 0.0000
I-13 0.1791 −0.3046 1.2684 0.0000 0.0000 0.0000 0.1731 −0.2594 1.2185 0.0000 0.0000 0.0000
I-14 0.1397 0.3163 0.6673 0.0000 0.0000 0.0000 0.1030 −0.3066 1.2864 0.0000 0.0000 0.0000
I-15 0.0976 0.0243 0.9509 0.0000 0.0000 0.0000 0.0396 0.3778 0.6198 0.0000 0.0000 0.0000

S-11 −0.4359 −0.8202 1.1489 0.1389 0.0013 0.0812 0.5852 0.1785 0.1555 −0.2546 −0.3503 1.6939
S-12 −0.0378 −0.0007 0.9389 0.0000 0.0000 0.0000 −0.0575 −0.2152 1.2091 0.0000 0.0000 0.0000
S-13 0.3783 −1.0497 1.0033 −0.3777 0.6097 0.8875 −0.0924 0.1629 −0.1047 0.2018 −0.2428 1.6146
S-14 0.5978 −0.1017 0.2930 −0.3369 0.3432 1.0099 1.0462 0.6359 −0.3848 −0.4948 −0.0975 1.4166

S-21 0.3496 −0.3529 0.8316 −0.0620 0.3303 0.9310 0.8587 −0.4337 0.9306 0.2145 0.4892 0.6410
S-22 0.0032 −0.0468 1.0596 0.0000 0.0000 0.0000 0.1444 0.3081 0.6595 0.0000 0.0000 0.0000
S-23 0.5952 −0.4361 0.9246 −0.1324 0.2907 0.9136 0.2558 −0.2874 0.9772 0.0347 0.0903 1.0308
S-24 −0.0189 0.4075 0.5927 0.0000 0.0000 0.0000 −0.0442 1.0516 −0.0280 0.0000 0.0000 0.0000

R-11 0.8381 0.7548 0.1959 −0.1829 −0.0434 0.9893 −0.4808 0.8832 0.4694 0.0023 0.0068 0.8700
R-12 −0.1484 −0.2510 1.2707 0.0000 0.0000 0.0000 0.3195 0.5060 0.4596 0.0000 0.0000 0.0000
R-13 −0.0897 0.7744 0.2370 0.0000 0.0000 0.0000 −0.0003 −0.0834 1.0955 0.0000 0.0000 0.0000

R-21 0.0387 −0.1391 1.1173 0.0000 0.0000 0.0000 0.1439 0.1888 0.7926 0.0000 0.0000 0.0000
R-22 −0.0559 0.8655 0.1343 0.0000 0.0000 0.0000 0.0440 0.6854 0.3247 0.0000 0.0000 0.0000

O-11 −0.6285 0.1557 0.4538 0.1286 0.6718 0.5289 0.0465 0.6464 −0.1267 0.0536 0.4990 0.7096

The 3-th rule The 4-th rule

𝜔3,0 𝜔3,1 𝜔3,2 𝜔̄3,0 𝜔̄3,1 𝜔̄3,2 𝜔4,0 𝜔4,1 𝜔4,2 𝜔̄4,0 𝜔̄4,1 𝜔̄4,2

I-11 −0.3703 0.4522 0.5892 0.2330 −0.7226 1.7101 0.2795 0.1408 0.5590 0.1451 −0.3391 1.3613
I-12 0.3783 −1.0040 1.9184 0.0000 0.0000 0.0000 0.0697 −0.5288 1.4609 0.0000 0.0000 0.0000
I-13 0.3046 −0.2632 1.2445 0.0000 0.0000 0.0000 0.1462 −0.5964 1.5439 0.0000 0.0000 0.0000
I-14 0.1586 −0.5443 1.5209 0.0000 0.0000 0.0000 0.3662 −0.8518 1.7788 0.0000 0.0000 0.0000
I-15 0.0112 −0.2840 1.2739 0.0000 0.0000 0.0000 0.1710 −0.0207 1.0023 0.0000 0.0000 0.0000

S-11 −0.2429 −0.1904 0.4335 0.1653 0.4224 0.9043 0.0836 −0.0899 0.3799 0.1601 0.3779 0.8928
S-12 0.1498 0.0221 0.9407 0.0000 0.0000 0.0000 0.0450 0.0519 0.9509 0.0000 0.0000 0.0000
S-13 −0.5643 0.2105 −0.2629 −0.2033 0.2977 1.2450 −0.4033 −0.1120 0.3524 −0.0444 0.6113 0.7474
S-14 −0.0090 −0.3952 0.6932 0.1722 0.0508 1.2248 1.0591 0.2904 −0.1630 −0.6496 0.0213 1.3830

S-21 −0.6179 0.5105 0.2505 0.2133 0.0669 1.0601 −0.8211 0.7785 0.0074 0.1882 0.1319 0.9656
S-22 0.0401 −0.2328 1.1797 0.0000 0.0000 0.0000 0.0527 0.0508 0.9374 0.0000 0.0000 0.0000
S-23 0.2315 0.2765 0.1430 −0.1035 0.5457 0.7140 0.6552 0.0233 0.6394 0.3152 0.3150 0.7516
S-24 −0.1831 0.5762 0.4450 0.0000 0.0000 0.0000 0.3089 0.6765 0.2870 0.0000 0.0000 0.0000

R-11 −0.1363 0.4252 0.6930 0.0356 −0.0785 1.0594 0.4930 −0.1093 1.0944 0.2850 −0.0095 0.9829
R-12 −0.0947 −0.0403 1.0565 0.0000 0.0000 0.0000 0.0815 −0.1333 1.1354 0.0000 0.0000 0.0000
R-13 0.2591 0.1188 0.8558 0.0000 0.0000 0.0000 0.0556 0.2050 0.7859 0.0000 0.0000 0.0000

R-21 −0.1923 0.3449 0.6752 0.0000 0.0000 0.0000 0.2183 0.0782 0.9253 0.0000 0.0000 0.0000
R-22 −0.1824 0.7610 0.2829 0.0000 0.0000 0.0000 0.1438 0.1835 0.7978 0.0000 0.0000 0.0000

O-11 0.6815 0.3004 0.1424 0.1683 0.5235 0.6362 −0.7800 0.6315 0.0387 0.0720 0.1635 1.0062
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