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Accurate battery state estimation is crucial for optimizing performance, enhancing safety, and prolonging battery
life. To improve predictive accuracy of State of Health (SOH) and enhance the generalization capability, this
paper proposes a novel framework for SOH estimation based on Forward-Broad Learning System (F-BLS). Firstly,
health features are extracted from the charging data, and correlation analysis is conducted to select health
metrics highly correlated with battery life degradation. Secondly, in order to achieve efficient training of the
model, an adaptive parameter optimization algorithm Forward-AdaBound (FAdaBound) is, integrated into the
Broad Learning System (BLS) to create the F-BLS. In addition, the proposed F-BLS integrates regularization
techniques to improve its generalization performance. Finally, three datasets are employed to evaluate the
performance of the proposed method, which is compared it with two commonly used data-driven methods. The
test result demonstrates that the proposed SOH estimation method accurately tracks the capacity degradation of
the battery, with RMSE less than 0.02 and MAE less than 0.03. Importantly, the F-BLS not only achieves excellent
training metrics but also sustains good prediction accuracy on unforeseen test samples, showcasing strong

generalization capability.

1. Introduction

To address the depletion of fossil fuels and environmental challenges
posed by global industrial development, it is imperative to focus on
renewable energy [1]. Lithium-ion batteries are extensively used in
electric vehicles and mobile devices due to their low pollution, recy-
clability, and high energy efficiency. They offer high energy density,
long lifespan, rapid charging, and low self-discharge rates [2]. Lithium-
ion batteries undergo internal changes as they age, including lithium ion
loss, electrode material degradation, diaphragm aging, and electrolyte
decomposition. These factors contribute to battery aging and a subse-
quent decline in cycling capacity [3,4]. State-of-health (SOH) estimation
plays a crucial role in accurately predicting battery life, optimizing
battery performance, ensuring secure operation, and is one of the most
vital aspects of battery management. Accurate SOH estimation enables
the prediction of remaining battery life, ensures the reliable operation of
battery systems [5].

The complexity of internal aging mechanisms in lithium-ion batteries
poses a significant challenge for precise SOH estimation [6]. Based on
comprehensive research, both data-driven and model-based [7]
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approaches are currently employed for SOH estimation. Model-based
approach enables monitoring of the internal state of lithium-ion batte-
ries and accurate assessment of battery condition [8]. Model-based ap-
proaches, including equivalent circuit modeling (ECM) and
electrochemical modeling (EM), are widely used. Li et al. [9] proposed
an improved ECM, including an additional capacitor, to estimate the
SOH of lithium-ion batteries. This method significantly enhances SOH
estimation accuracy by extracting health features from electrochemical
impedance spectroscopy. Gao et al. [10] proposed a reduced-order EM
that simplifies the full-order pseudo-two-dimensional model using the
Padé approximation method. This approach enhances the accuracy of
state estimation. Lyu et al. [11] developed a Particle Filtering (PF)
framework combined with EM. This framework defines the model pa-
rameters degraded with the battery performance as state variables,
achieving higher estimation accuracy compared to conventional PF. Zhu
et al. [12] proposed a hybrid approach that combines multiple filtering
methods, not only improving the estimation accuracy of SOH but also
enhancing the estimation speed, enabling fast and accurate prediction.
Li et al. [13] introduced a state observer based on the extended single-
particle model. The observer utilizes reduced-order electromagnetism
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Fig. 1. Li-ion battery cyclic aging experiment result.

to monitor real-time state changes in the battery, thereby achieving
accurate SOH estimation. By modeling batteries and simulating their
behavior under different conditions, it is possible to identify aging
characteristics and achieve SOH estimation. However, model-based
methods encounter challenges such as parameter uncertainty, model
complexity, extended computation times, and limited dynamic adapt-
ability, etc.

Data-driven approaches demonstrate greater flexibility and adapt-
ability across diverse battery types and usage conditions compared to
model-based approaches [24]. This method enables accurate identifi-
cation of performance decline trends and estimation of SOH through the
analysis of battery cycling data. Currently, predominant methods used
for SOH estimation include neural networks [14-16], Random Forests
(RF) [17], Long Short-Term Memory (LSTM) [18,41], and Gaussian
Process Regression (GPR) [19], etc. Among them, Fan et al. [20] pro-
posed a combination of gated recurrent units and convolutional neural
networks. This combination effectively captures spatio-temporal fea-
tures in charging data by learning battery charging curves, resulting in
enhanced SOH prediction accuracy. Zhang et al. [21] introduced a
hybrid model that integrates RF, the artificial bee colony algorithm
(ABC), and the generalized regression neural network (GRNN). This
model performs feature selection through RF and refines GRNN pa-
rameters using the ABC algorithm, achieving high-precision estimation
of SOH even before the battery undergoes significant aging. Deep neural
networks, as a subset of neural networks, have found wide-ranging ap-
plications. Ma et al. [22] integrated enhanced LSTM with the differential
evolutionary gray wolf optimizer for hyper-parameter optimization,
enhancing the accuracy of predictions. Peng et al. [23] developed a
battery SOH estimation method based on multi-health features extrac-
tion and an improved LSTM, which reduces the error caused by a single
health feature and improves the estimation accuracy. However, deep
neural networks face issues such as overfitting, demanding extensive
time and memory for training, and being susceptible to gradient van-
ishing and explosion. The overfitting problem results in reduced
generalization ability, while the gradient problem leads to instability in
model training and affects the reliability of predictions. These issues
negatively impact the accurate estimation of SOH.

In recent years, the Broad Learning System (BLS) has emerged as an
effective method [25], achieving excellent results in SOH estimation. Gu
et al. [26] proposed a Polak-Ribiere-Polyak conjugate gradient algo-
rithm optimized broad learning system (BLS) for accurate lithium-ion
battery SOH estimation, demonstrating high accuracy with a mean ab-
solute error below 1 % and improved model generalization through
enhanced training data. Chen et al. [31] proposed a hybrid algorithm
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combining the BLS and relevance vector machine for accurately esti-
mating the SOH of lithium-ion batteries, which solves the problems of
capacity regeneration and stochasticity. Despite the research that has
been conducted to improve and optimize BLS, the mainstream BLS
method still relies on ridge regression. While this approach effectively
addresses vanishing and exploding gradients, its limitations in predic-
tion accuracy and generalization performance constrain its widespread
adoption. To address these issues, this paper introduces the Forward-
Broad Learning System (F-BLS) and proposes a SOH estimation frame-
work aimed at enhancing the accuracy of SOH estimation.

The primary contributions and innovations of this paper are outlined
below:

e A novel adaptive optimization algorithm, Forward-AdaBound
(FAdaBound), based on AdaBound and forward automatic differen-
tiation, is proposed. This algorithm enables faster and more efficient
handling and analysis of battery data without inverse matrix calcu-
lations. By eliminating the need for backpropagation, FAdaBound
simplifies the optimization process and enhances the robustness of
the SOH estimation model. Consequently, it provides more accurate
and reliable SOH predictions.

e A novel SOH estimation method based on F-BLS is proposed. This
method integrates the FAdaBound optimization algorithm and reg-
ularization techniques into BLS, representing a significant advance-
ment in SOH estimation for various battery types and usage
conditions. This improvement optimizes BLS efficiently and accu-
rately, reducing overfitting risk and ensuring a more precise assess-
ment of battery SOH.

e The proposed method has been validated on multiple datasets,
showecasing consistent high estimation accuracy and generalizability
across various types of batteries.

The remainder of the paper is organized as follows: Section II con-
ducts battery cycle aging experiments to process the acquired data along
with data from available datasets. Health features are then extracted,
followed by correlation analysis. Section III explains the F-BLS as well as
the optimization algorithm proposed in this paper and presents the SOH
estimation steps. In Section IV, the performance of F-BLS is validated
and two publicly available datasets are used to compare the efficacy of F-
BLS with other methods.

2. Battery data processing

In this section, experimental datasets are utilized to extract health
features. The extracted health features are further analyzed using
Pearson correlation analysis.

2.1. Cyclic aging experiment

The experimental platform comprises the battery test instrument
ARBIN BT-5HC, a temperature chamber, and a host computer. Four
LR18650SZ lithium-ion batteries, labeled as M2038, M2039, M2041,
and M2042, are utilized in this experiment to conduct the cyclic aging
experiment. The temperature was set to 25 °C in the temperature
chamber, and the experimental program was configured and experi-
mental data were stored using the host computer. The experimental
program was configured for constant current and constant voltage (CC-
CV) charging mode. It charged at 1C until reaching 4.2 V during the CC
phase, and then transitioned to CV charging mode until the current
decreased to 0.05 A. After 1 h of resting, the batteries were discharged at
a 1C until the voltage was reduced to 3.0 V. Each battery was subjected
to 500 charge/discharge cycles.

The aging data are presented in Fig. 1.

In addition to the cyclic aging dataset obtained from above experi-
ments, this paper also utilizes NASA battery aging dataset [33] and
Oxford University battery aging dataset. NASA Battery aging dataset
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Fig. 2. Li-ion battery aging dataset: (a) Capacity of NASA dataset. (b) Capacity of Oxford dataset.

Table 1

Comparison of the battery aging dataset.
Battery number  Capacity/Ah  Q range/Ah Voltage/V  Cutoff voltage/V
BO5 2.03 2.03 - 0.80 4.2 2.7
BO6 1.85 1.85 - 0.80 4.2 2.5
BO7 1.95 1.95 - 0.80 4.2 2.2
B018 1.98 1.98 — 0.80 4.2 2.2
Celll 0.74 0.74 - 0.43 4.2 2.7
Cell2 0.73 0.73 - 0.43 4.2 2.7
Cell7 0.72 0.72 - 0.43 4.2 2.7
Cell8 0.72 0.72 - 0.43 4.2 2.7
M2038 2.4 24514 4.2 3.0
M2039 2.35 235- 1.4 4.2 3.0
M2041 2.35 235> 1.4 4.2 3.0
M2041 2.35 235-14 4.2 3.0

cycled with LG Chem 18,650 batteries. These batteries have a rated
capacity of 2.1 Ah and an operating voltage range of 3.2 V-4.2 V. The
aging data were obtained through CC-CV charge/discharge cycles at
24 °C. B05, B06, BO7 and B18 were selected as the research objects. The
Oxford University battery aging dataset consists of aging data from eight
lithium cobaltate pouch batteries. The battery has a rated capacity of
740mAh and the eight cells are labeled Celll, Cell2, ..., Cell8, respec-
tively. The aging data of this dataset was obtained by CC charging at
40 °C and discharging it under simulated urban driving conditions. The
capacity was calibrated with a 1C current discharge every 100 charge/
discharge cycles. Celll, Cell 2, Cell 7, and Cell 8 were selected for the
study, and the aging data are shown in Fig. 2.

The electrochemical characteristics and experimental conditions of
the batteries used in the three datasets were different, which are pre-
sented in Table 1.

2.2. Health feature extraction

The charge and discharge curves of a battery change as it ages. In
practical scenarios, the discharge curve shape varies due to uncertain
working conditions. In contrast, charging conditions are typically fixed,
often using the CC-CV charging mode. The charging curve is relatively
smoother compared to the discharge curve, making feature extraction
easier. The dataset comprises information on charging time, current,
voltage, temperature, and capacity. This serves as a crucial source of
information for estimating the SOH of batteries. The voltage curves for
batteries undergoing CC charging at various aging levels often exhibit
similar and flat characteristics, which makes it difficult to identify the
degree of battery aging. Consequently, in addition to the health features
obtained through direct measurement, Incremental Capacity Analysis
(ICA) is employed as a more effective approach to handle charging data
[32]. The ICA method can transform seemingly similar and smooth
voltage curves into a series of Incremental Capacity (IC) curves that
exhibit peaks and valleys, which makes it convenient to identify batte-
ries with different levels of aging, and the health features are obtained
from IC curves. In this paper, the SOH can be expressed as:

Qnow

ew

SOH = x 100% (@)

In this equation, Q,., represents the nominal capacity of the battery
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Fig. 3. Charging voltage curves of different datasets: (a) Charging voltage curves of cyclic aging experiment. (b) Charging voltage curves of NASA. (c) Charging

voltage curves of Oxford.
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Fig. 4. IC curves: (a) IC curves of cycling aging experiment. (b) IC curves of NASA dataset. (c) IC curves of Oxford dataset.

Table 2
HF extracted from charging curves.
HF Mlustration of HF Type
name
EVD The time required for the same interval of voltage Charging
change time
tec CC charging time Charging
time
Icp peak of the IC curve IC curve
ICPL IC curve peak location IC curve
Table 3
The result of Pearson correlation analysis.
HF EVD tee ICP ICPL
Coefficient 0.9987 0.9992 —0.9558 —0.9622

and Qy,, represents the capacity obtained by measurement after aging.

2.2.1. HF related to charging time

Changes in charging time can indicate alterations in battery capacity,
and charging time features are easily measurable. Partial charging and
discharging modes are often applied to batteries because full charging or
discharging takes a long time and negatively impacts battery lifespan.
Partial charge/discharge data still contain crucial information about the
battery's health, allowing the extraction of health features without
losing the key characteristics of a complete cycle.

The charging voltage curves for batteries at various aging stages are
depicted in Fig. 3. With battery aging, the charging curve gradually
shifts to the left, and the time needed for the voltage to reach the same
value decreases. This parameter provides an effective reflection of ca-
pacity decline. EVD is defined as the time required for the same voltage
change interval, the definition equation is as follows:

AV=Vin-V; (2)

EVD = |t;1 — 3)
where t; ;1 is the time when the voltage is V;; 1, and t; is the time when the
voltage is V;. The charging curves of the three different types of batteries
show the most significant variation in the voltage range of 3.55 V-4 V.
Therefore, in this study, the time required to charge from 3.55V to 4 V is
selected as the health feature EVD, as this voltage range is applicable to
all three types of batteries. In this paper, V; is selected as 3.55 V and V;1
as 4 V.

Capacity decline is a common indicator of battery aging, resulting in
a reduction in the maximum energy that can be stored. Consequently,

the time to reach the preset voltage decreases, shortening the CC
charging time (t..). This feature directly indicates changes in the bat-
tery's capacity, is easy to measure, and allows for real-time SOH
monitoring.

Since EVD and t. can better indicate the capacity decline and the
features are easy to obtain. Therefore, in this paper, EVD and t. are
chosen as health features related to charging time.

2.2.2. HF related to incremental capacity curves

The incremental capacity curve is shown in Fig. 4. By using the ICA
technique, it is possible to observe the changes in the IC curve at
different aging levels [35]. The ICA calculation formula is shown below:

dQ AQ IL-dt
VoAV dv Q)
Q= / Ldt ®)

where, Q represents the current capacity, dV/dt is the rate of voltage
change, and I, is the charging current.

During the aging process, the IC curves under different aging states
have different locations with different sizes of wave peaks, the peak of
the IC curve (ICP) rises, the location of the peak (ICPL) increases, and the
IC curve shifts downward gradually. These changes can be used to reflect
the battery capacity decline. Therefore, the ICP and the ICPL are selected
as the health features. The health features selected in this paper are
detailed in Table 2.

2.3. Pearson correlation analysis method

Health features correlated with SOH are selected as model inputs to
reduce model complexity and improve prediction performance. In this
paper, Pearson correlation analysis is employed for a rapid examination
of multiple health features [34]. The correlation coefficient between the
two variables a = (a;,a, ...,a,) and b = (b1, b, ...,b,) is shown in Eq.
6):

>ia(a —a)(bi—b)
V(@ — @) /S0, (b B)®

Among them, q; and b; represent the i-th observation values for two

r=

©

variables, @ and b is the mean of two variables, n represents the number
of observations.

The correlation analysis was performed on the selected health fea-
tures in this section, four parameters, EVD, t.., ICP, ICPL were selected as
the health features. The correlation result is presented in Table 3.
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3. Methodology

This section begins with an exposition of the basic BLS. On the basis
of BLS, in order to obtain a satisfactory SOH estimation method, this
paper proposes an F-BLS model integrating the regularization technique
and trains the model using FAdaBound, an adaptive optimization algo-
rithm based on AdaBound [36] and forward auto-differentiation.

3.1. Broad learning system

BLS is a neural network constructed based on the traditional Random
Vector Functional Link Neural Network (RVFLNN). RVFLNN excels in
overcoming long training times and showcasing high generalization
ability during function approximation. It directly employs input data to
construct the enhancement nodes. Building on this, BLS initially maps
the input data to a set of features and then utilizes both the input data
and the mapped features to construct the enhancement nodes. These
adjustments enable BLS to perform more intricate feature extraction and
data dimensionality reduction, thereby bolstering the model's flexibility
and generalization ability. The network structure of BLS is illustrated in
Fig. 5.

In BLS, it is assumed that the input data X has N samples, each with
dimension M, and Y € RN*C is the output matrix. For n feature map-
pings, each mapping generates k mapping nodes, and the mapping
features can be expressed as Eq. (7):

N(X ;60%)

n>

v

Jacobian-Vector Product

Jn @)

FAdaBound

Samplev € RY —
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Zi:q’)i(XWe;J’_ﬂei)v i=12,..,n )

where W, f.; are randomly generated weights and biases with appro-
priate dimensions. The mapped features form a feature mapping layer
Z =[Z1,Z5...,Z;], containing i sets of mapped features. These features Z;
are mapped by a nonlinear transformation to generate enhancement
nodes Hj:

H; = &(ZiWy +By), J=1,2,..,m (€©))

where Wy; and f; are the weights and biases associated with the
enhancement nodes. The enhancement nodes are combined into an
enhancement node layer H = [Hi,H,,...,H;|, including j groups of
enhancement nodes. i and j can be selected based on the specific
modeling task and the complexity of the problem. Different numbers of
mapping features and groups of augmentation nodes can be flexibly
selected as needed to accommodate different data and tasks.
Thus, the BLS model can be represented in the following form:

Y= [Zlv---vzn‘Hla---:Hm]Wm
:[Z‘H}Wm 9
=AW,

where Wy, = [Zy|Hn|"Y is the connection weight of the output layer, and
the broad network connection weights are obtained by solving the
pseudo-inverse using ridge regression approximation [25]. The solution
formula is as follows:

A" =lim(A+AAT) AT (10)

3.2. Forward-broad learning system

BLS is normally optimized using ridge regression[27-30], which still
suffers from the problem of easy overfitting and unsatisfactory accuracy.
The model proposed in this paper integrates the forward auto-
differentiation technique and no longer needs the additional back-
propagation computational process. In addition, a parameter update
strategy [36] based on FAdaBound is applied to the proposed F-BLS
during the forward propagation process. The F-BLS consists of three
main parts, the base BLS, the regularized loss evaluation, and the for-
ward gradient evaluation. The structure of the proposed F-BLS is shown
in Fig. 6.

Base BLS Regularization
Y L,

O =—> Regularization
| ° \

(zr11") —= 2 —_—1
0 ¢ A
[——
Parameter

Regularization

for

Forward Gradient

F(0)

Parameter update
AdaBound

Fig. 6. The structure of the proposed F-BLS.
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3.2.1. Base BLS

Assuming that the proposed F-BLS mathematical model can be rep- y=Nx;0) an
resented as N(-; 8), Then the mapping relationship between its input and In the equation, 4 is the model parameter vector for BLS, 8 € R?,
output can be expressed as: where 6 includes the weight parameters W and bias parameters f for the

feature mapping layer, enhanced node layer, and output layer.
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3.2.2. Regularization

In machine learning, regularization techniques are often used to
reduce the risk of overfitting [37] and improve model generalization. In
this paper, the L2 regularization loss term is embedded in the proposed
F-BLS:

N Q
L= ;(yn—N(xn;e))er%;ej a2)

N =

where N represents the number of training samples, A represents the
regularization coefficient, and Q represents the number of model pa-
rameters.

3.2.3. FAdaBound

In this paper, we propose the FAdaBound algorithm for forward
gradient evaluation and parameter adaptive updating. In fact, nearly all
current gradient-based optimization algorithms require back-
propagation to compute the partial derivatives of the losses with respect
to the parameters. The backward mode of automatic differentiation
techniques is widely successful in deep learning and is often used to
compute Jacobian matrices [38], thus enabling fast backpropagation.

Forward propagation enables simultaneous estimation of parameter
gradients during computation, facilitating parameter updates. This
approach offers superior parameter optimization efficiency compared to
backpropagation. As shown in Fig. 6, the FAdaBound can evaluate the
gradient of the parameters 0L/d6,; while the F-BLS forward propagation
is computed N(x; ).

Firstly, FAdaBound samples a perturbation vector while the input
vector X, is accepted by Base BLS:

v~ .0(0,1),v € R? 13)

suop= |

where .77(0,1) denotes a normal distribution and the scalar components
v; of v are independent of each other and have a mean and statistics of
0 for all i.

Secondly, the computation of intermediate variables (including Z, H,
etc.) and partial derivatives was then performed simultaneously at each
step of the F-BLS forward propagation. To improve optimization effi-
ciency beyond backpropagation, only one forward auto-differentiation
is performed per iteration of the optimization, instead of Q times. In
this process, the Jacobi matrix is not given exactly, but the Jacobi vector
product is obtained by direct computation:

V1
sl e a
Yo

The partial derivatives can be taken as the directional derivative

along a given perturbation vector v:

2 oL

>, 15)
£ 06

AL(O)v =

where AL(6)v is a scalar.
Finally, the directional derivative AL(A)v is multiplied with the
perturbation vector to obtain the forward gradient:

a—va + a—Lv Vot ..o+ a—Lv v
00, 1 00, T 0 e
oL a , P
F(H) _ AL(H)V'V _ %Vl\’z + 0—921’2 + ...+ EVQVQ 16)
oL oL a
30,170 + 30,72 +...+ EVQ
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Fig. 10. The SOH estimation results and error: (a) SOH estimation result of 10#. (b) SOH estimation result of 11#. (c) SOH estimation result of 12#. (d) SOH
estimation error of 10#. (e) SOH estimation error of 11#. (f) SOH estimation error of 12#.

where, F(0) € R

The adaptive learning strategy [36] is integrated into our proposed
forward optimization algorithm FAdaBound for updating the model
parameters of F-BLS. The proposed FAdaBound can compute an adaptive
learning rate for each model parameter §,AL(0)v from the forward
gradient estimates at the first and second moments, q € [1,2,...,Q]. The
pseudo-code of the FAdaBound algorithm is shown in Algorithm 1.

Algorithm 1. Train a F-BLS by FAdaBound.

Require:
0y: Initial parameter vector of F-BLS;
a: Initial learning rate of FAdaBound;
1, P1€[0,1): Exponential decay rates of moment estimates in FAdaBound;
¢: A small positive number in FAdaBound;
£(1), u(r): The lower and upper bound functions in FAdaBound;
Initialize:

mo=0, vi=0;
t<0;
Compute:
1: while 6, not converged do
2: t «— t+1, gain a input vector x;;
3: vi~N'(0, I); &Sample perturbation
4: Note: the following computes ¥, and F(#,) simultaneously and without having to
compute

VL in F-BLS forward process;

5 Yo, D(0)) <N(x;; 6,), VL()) vi; >Forward AD
6 F(0) — D@)v:;
7: m;— fime+(1-p1)F(0);
8 vi— foviert(1-42) F(6)%
0 e e
14, 14,
10: a — max[t’(t), min (u(r)A, V;:7‘)]
11: 011 — 0,- aOm,;
12: end while
Return 0,1

3.3. SOH estimation

In this section, SOH estimation is performed based on the method of
F-BLS proposed in Section 3.2. The estimation framework is shown in
Fig. 7.

The SOH estimation framework is divided into three parts: feature
extraction, correlation analysis, and SOH estimation based on F-BLS.

Step I: Extract four HFs related to current, charging time and capacity
increment from the Experimental dataset, NASA battery dataset and the
Oxford dataset.

Step II: The four HFs were analyzed by Pearson's correlation analysis,
the selected HFs were all highly correlated with SOH, namely EVD, t.,
ICP and ICPL, were screened as inputs to F-BLS.

Step III: F-BLS initialization includes setting the number of feature
mapping nodes and enhancement nodes. The input features are mapped
using the feature mapping nodes to generate the feature mapping layer.
The feature mapping layer is used as the input of the enhancement nodes
and the enhancement nodes nonlinearly transform the feature mapping
layer to obtain the enhancement node layer. The feature mapping layer
are combined with the enhancement node layer into the input matrix.
The weights of F-BLS are initialized, and the FAdaBound algorithm is
employed for forward gradient evaluation and parameter adaptive
updating. The weights of F-BLS are obtained through training data. After
completing the training of F-BLS on the training set, SOH estimation is
performed based on the trained model and validate the proposed SOH
estimation method's performance using the test set.

4. Results and discussions

This section provides thorough comparative tests, accompanied by
detailed results and analysis. Firstly, a brief description of the
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Fig. 11. The SOH estimation compared with different methods: (a) SOH estimation results of 2#, (b) SOH estimation results of 3#, (c) SOH estimation results of 4#,
(d) SOH estimation of 6#. (e) SOH estimation results of 7#, (f) SOH estimation results of 8#, (g) SOH estimation results of 10#, (h) SOH estimation of 11#. (i) SOH

estimation of 12#.

performance metrics used to evaluate the different methods will be
presented. Subsequently, the performance of F-BLS is evaluated, and
error analysis is performed using multiple batteries from three datasets.
Lastly, the comparison methods, RVM [39], and GPR [40], are
introduced.

4.1. Evaluation criteria

To assess the estimation accuracy of the algorithm for SOH, this
paper employs mean absolute error (MAE), root mean square error
(RMSE), and R? (R-square) to quantify the estimation error. The formula
is shown below:

1 ~
MAE = — i— Ui 1
n;m Cil a7
1 ~ 2
RMSE = EZ(cﬁc,) (18)

Y(Ci— G
R =1 —Wx 100% (19)

In this equation, n represents the size of the sample, C; represents the
true capacity of the i-th cycle, C; is the actual capacity, and C is the
average capacity. The diminution of MAE and RMSE corresponds to a
reduction in the estimation error of SOH, indicating that the estimation
method performs well. Additionally, the greater the magnitude of the
coefficient of R?, the heightened the degree of fit exhibited by the model,
suggesting a more precise estimation approach.

4.2. Estimation results

In this section, the proposed SOH estimation method is tested on
three datasets. The batteries labeled M2038, M2039, M2041, and
M2042 are denoted as 1#, 2#, 3#, and 4# respectively. The batteries
from the NASA dataset BO5, B06, BO7 and BO18 are labeled as 5#, 6#,
7#, and 8#, while those from the Oxford dataset Celll, Cell2, Cell3 and
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Fig. 12. The evaluation result for different methods: (a) evaluation result of 2#, (b) evaluation result of 3#, (c) evaluation result of 4#, (d) evaluation result of 6#.
(e) evaluation result of 7#, (f) evaluation result of 8#, (g) evaluation result of 10#, (h) evaluation result of 11#. (i) evaluation result of 12#.

Cell4 are labeled as 9#, 10#, 11#, and 12#. The feature mapping nodes
of F-BLS are set to 7, and the enhancement nodes are set to 50.

In the cyclic aging dataset obtained from the experiments, the model
was trained using battery 1#, and its performance was verified using
batteries 2#, 3#, and 4#. As depicted in Fig. 8, the SOH estimates
exhibit the same declining trend as the actual data, with estimation
errors consistently within £1.5 %. This indicates that the method pos-
sesses the capability to accurately estimate the SOH and demonstrates
superior reliability and stability.

Fig. 9 displays the full-life SOH prediction results for battery units
6#, 7#, and 8# using battery 5# for training, while Fig. 10 illustrates
the SOH prediction results for battery units 10#, 11#, and 12# using
battery 9+# for training. In comparison with the actual data, the proposed
F-BLS method demonstrates exceptionally high prediction accuracy for
various datasets, with the error between estimated and actual values
consistently within +1 %.

To further validate the effectiveness and accuracy of F-BLS,
commonly used SOH estimation data-driven methods, including RVM
and GPR, are employed for comparison. Fig. 11 displays the results and
estimation errors of SOH estimation using various methods. It is evident
that F-BLS holds a significant advantage over other methods in terms of
estimation accuracy and effectively minimizes bias in the estimation
results. This paper uses MAE, RMSE, and R? to quantify estimation er-
rors. The corresponding values are presented in Fig. 12. The results
demonstrate that, compared to other methods, the F-BLS proposed in
this paper significantly reduces the SOH estimation error, with MAE and
RMSE values below 0.02. Overall, the test results indicate that F-BLS
exhibits high estimation accuracy and exceptional generalization
ability.

5. Conclusion

This paper introduces an F-BLS-based framework for estimating the

10

SOH of lithium-ion batteries. The methodology employs forward auto-
differentiation to optimize the BLS. SOH-related features are extracted
from datasets sourced from three datasets. After Pearson correlation
analysis, features strongly correlated with capacity decline are selected
as inputs for the F-BLS. The F-BLS incorporates regularization tech-
niques and leverages FAdaBound, an adaptive optimization algorithm
based on forward auto-differentiation, significantly enhancing predic-
tion accuracy and model generalization. To evaluate the method's effi-
cacy, we validate it using the cyclic aging dataset from the experiment,
along with NASA and Oxford battery datasets. The results are compared
with two commonly used data-driven methods, indicating superior
estimation accuracy of the F-BLS. Furthermore, it maintains robust
prediction performance across various battery datasets, with RMSE
below 0.03 and MAE values below 0.02, underscoring its high gener-
alization ability. This research contributes to achieving rapid, real-time
estimation of battery SOH.

Future work will include conducting aging experiments under
various working conditions using diverse batteries to validate further
the accuracy and generalization of F-BLS.
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