
Journal of Energy Storage 99 (2024) 113376

Available online 24 August 2024
2352-152X/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Research papers

A novel state of health estimation method for lithium-ion battery based on 
forward-broad learning system

Haoyu Ming , Dong Lu, Hui Zhang , Guangfeng Wang , Dongyu Liu , Naxin Cui *

School of Control Science and Engineering, Shandong University, Jinan 250061, China

A R T I C L E  I N F O

Keywords:
Lithium-ion battery
Health features
SOH estimation
Broad learning system

A B S T R A C T

Accurate battery state estimation is crucial for optimizing performance, enhancing safety, and prolonging battery 
life. To improve predictive accuracy of State of Health (SOH) and enhance the generalization capability, this 
paper proposes a novel framework for SOH estimation based on Forward-Broad Learning System (F-BLS). Firstly, 
health features are extracted from the charging data, and correlation analysis is conducted to select health 
metrics highly correlated with battery life degradation. Secondly, in order to achieve efficient training of the 
model, an adaptive parameter optimization algorithm Forward-AdaBound (FAdaBound) is, integrated into the 
Broad Learning System (BLS) to create the F-BLS. In addition, the proposed F-BLS integrates regularization 
techniques to improve its generalization performance. Finally, three datasets are employed to evaluate the 
performance of the proposed method, which is compared it with two commonly used data-driven methods. The 
test result demonstrates that the proposed SOH estimation method accurately tracks the capacity degradation of 
the battery, with RMSE less than 0.02 and MAE less than 0.03. Importantly, the F-BLS not only achieves excellent 
training metrics but also sustains good prediction accuracy on unforeseen test samples, showcasing strong 
generalization capability.

1. Introduction

To address the depletion of fossil fuels and environmental challenges 
posed by global industrial development, it is imperative to focus on 
renewable energy [1]. Lithium-ion batteries are extensively used in 
electric vehicles and mobile devices due to their low pollution, recy
clability, and high energy efficiency. They offer high energy density, 
long lifespan, rapid charging, and low self-discharge rates [2]. Lithium- 
ion batteries undergo internal changes as they age, including lithium ion 
loss, electrode material degradation, diaphragm aging, and electrolyte 
decomposition. These factors contribute to battery aging and a subse
quent decline in cycling capacity [3,4]. State-of-health (SOH) estimation 
plays a crucial role in accurately predicting battery life, optimizing 
battery performance, ensuring secure operation, and is one of the most 
vital aspects of battery management. Accurate SOH estimation enables 
the prediction of remaining battery life, ensures the reliable operation of 
battery systems [5].

The complexity of internal aging mechanisms in lithium-ion batteries 
poses a significant challenge for precise SOH estimation [6]. Based on 
comprehensive research, both data-driven and model-based [7] 

approaches are currently employed for SOH estimation. Model-based 
approach enables monitoring of the internal state of lithium-ion batte
ries and accurate assessment of battery condition [8]. Model-based ap
proaches, including equivalent circuit modeling (ECM) and 
electrochemical modeling (EM), are widely used. Li et al. [9] proposed 
an improved ECM, including an additional capacitor, to estimate the 
SOH of lithium-ion batteries. This method significantly enhances SOH 
estimation accuracy by extracting health features from electrochemical 
impedance spectroscopy. Gao et al. [10] proposed a reduced-order EM 
that simplifies the full-order pseudo-two-dimensional model using the 
Padé approximation method. This approach enhances the accuracy of 
state estimation. Lyu et al. [11] developed a Particle Filtering (PF) 
framework combined with EM. This framework defines the model pa
rameters degraded with the battery performance as state variables, 
achieving higher estimation accuracy compared to conventional PF. Zhu 
et al. [12] proposed a hybrid approach that combines multiple filtering 
methods, not only improving the estimation accuracy of SOH but also 
enhancing the estimation speed, enabling fast and accurate prediction. 
Li et al. [13] introduced a state observer based on the extended single- 
particle model. The observer utilizes reduced-order electromagnetism 
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to monitor real-time state changes in the battery, thereby achieving 
accurate SOH estimation. By modeling batteries and simulating their 
behavior under different conditions, it is possible to identify aging 
characteristics and achieve SOH estimation. However, model-based 
methods encounter challenges such as parameter uncertainty, model 
complexity, extended computation times, and limited dynamic adapt
ability, etc.

Data-driven approaches demonstrate greater flexibility and adapt
ability across diverse battery types and usage conditions compared to 
model-based approaches [24]. This method enables accurate identifi
cation of performance decline trends and estimation of SOH through the 
analysis of battery cycling data. Currently, predominant methods used 
for SOH estimation include neural networks [14–16], Random Forests 
(RF) [17], Long Short-Term Memory (LSTM) [18,41], and Gaussian 
Process Regression (GPR) [19], etc. Among them, Fan et al. [20] pro
posed a combination of gated recurrent units and convolutional neural 
networks. This combination effectively captures spatio-temporal fea
tures in charging data by learning battery charging curves, resulting in 
enhanced SOH prediction accuracy. Zhang et al. [21] introduced a 
hybrid model that integrates RF, the artificial bee colony algorithm 
(ABC), and the generalized regression neural network (GRNN). This 
model performs feature selection through RF and refines GRNN pa
rameters using the ABC algorithm, achieving high-precision estimation 
of SOH even before the battery undergoes significant aging. Deep neural 
networks, as a subset of neural networks, have found wide-ranging ap
plications. Ma et al. [22] integrated enhanced LSTM with the differential 
evolutionary gray wolf optimizer for hyper-parameter optimization, 
enhancing the accuracy of predictions. Peng et al. [23] developed a 
battery SOH estimation method based on multi-health features extrac
tion and an improved LSTM, which reduces the error caused by a single 
health feature and improves the estimation accuracy. However, deep 
neural networks face issues such as overfitting, demanding extensive 
time and memory for training, and being susceptible to gradient van
ishing and explosion. The overfitting problem results in reduced 
generalization ability, while the gradient problem leads to instability in 
model training and affects the reliability of predictions. These issues 
negatively impact the accurate estimation of SOH.

In recent years, the Broad Learning System (BLS) has emerged as an 
effective method [25], achieving excellent results in SOH estimation. Gu 
et al. [26] proposed a Polak-Ribière-Polyak conjugate gradient algo
rithm optimized broad learning system (BLS) for accurate lithium-ion 
battery SOH estimation, demonstrating high accuracy with a mean ab
solute error below 1 % and improved model generalization through 
enhanced training data. Chen et al. [31] proposed a hybrid algorithm 

combining the BLS and relevance vector machine for accurately esti
mating the SOH of lithium-ion batteries, which solves the problems of 
capacity regeneration and stochasticity. Despite the research that has 
been conducted to improve and optimize BLS, the mainstream BLS 
method still relies on ridge regression. While this approach effectively 
addresses vanishing and exploding gradients, its limitations in predic
tion accuracy and generalization performance constrain its widespread 
adoption. To address these issues, this paper introduces the Forward- 
Broad Learning System (F-BLS) and proposes a SOH estimation frame
work aimed at enhancing the accuracy of SOH estimation.

The primary contributions and innovations of this paper are outlined 
below:

• A novel adaptive optimization algorithm, Forward-AdaBound 
(FAdaBound), based on AdaBound and forward automatic differen
tiation, is proposed. This algorithm enables faster and more efficient 
handling and analysis of battery data without inverse matrix calcu
lations. By eliminating the need for backpropagation, FAdaBound 
simplifies the optimization process and enhances the robustness of 
the SOH estimation model. Consequently, it provides more accurate 
and reliable SOH predictions.

• A novel SOH estimation method based on F-BLS is proposed. This 
method integrates the FAdaBound optimization algorithm and reg
ularization techniques into BLS, representing a significant advance
ment in SOH estimation for various battery types and usage 
conditions. This improvement optimizes BLS efficiently and accu
rately, reducing overfitting risk and ensuring a more precise assess
ment of battery SOH.

• The proposed method has been validated on multiple datasets, 
showcasing consistent high estimation accuracy and generalizability 
across various types of batteries.

The remainder of the paper is organized as follows: Section II con
ducts battery cycle aging experiments to process the acquired data along 
with data from available datasets. Health features are then extracted, 
followed by correlation analysis. Section III explains the F-BLS as well as 
the optimization algorithm proposed in this paper and presents the SOH 
estimation steps. In Section IV, the performance of F-BLS is validated 
and two publicly available datasets are used to compare the efficacy of F- 
BLS with other methods.

2. Battery data processing

In this section, experimental datasets are utilized to extract health 
features. The extracted health features are further analyzed using 
Pearson correlation analysis.

2.1. Cyclic aging experiment

The experimental platform comprises the battery test instrument 
ARBIN BT-5HC, a temperature chamber, and a host computer. Four 
LR18650SZ lithium-ion batteries, labeled as M2038, M2039, M2041, 
and M2042, are utilized in this experiment to conduct the cyclic aging 
experiment. The temperature was set to 25 ◦C in the temperature 
chamber, and the experimental program was configured and experi
mental data were stored using the host computer. The experimental 
program was configured for constant current and constant voltage (CC- 
CV) charging mode. It charged at 1C until reaching 4.2 V during the CC 
phase, and then transitioned to CV charging mode until the current 
decreased to 0.05 A. After 1 h of resting, the batteries were discharged at 
a 1C until the voltage was reduced to 3.0 V. Each battery was subjected 
to 500 charge/discharge cycles.

The aging data are presented in Fig. 1.
In addition to the cyclic aging dataset obtained from above experi

ments, this paper also utilizes NASA battery aging dataset [33] and 
Oxford University battery aging dataset. NASA Battery aging dataset 
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Fig. 1. Li-ion battery cyclic aging experiment result.
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cycled with LG Chem 18,650 batteries. These batteries have a rated 
capacity of 2.1 Ah and an operating voltage range of 3.2 V–4.2 V. The 
aging data were obtained through CC-CV charge/discharge cycles at 
24 ◦C. B05, B06, B07 and B18 were selected as the research objects. The 
Oxford University battery aging dataset consists of aging data from eight 
lithium cobaltate pouch batteries. The battery has a rated capacity of 
740mAh and the eight cells are labeled Cell1, Cell2, …, Cell8, respec
tively. The aging data of this dataset was obtained by CC charging at 
40 ◦C and discharging it under simulated urban driving conditions. The 
capacity was calibrated with a 1C current discharge every 100 charge/ 
discharge cycles. Cell1, Cell 2, Cell 7, and Cell 8 were selected for the 
study, and the aging data are shown in Fig. 2.

The electrochemical characteristics and experimental conditions of 
the batteries used in the three datasets were different, which are pre
sented in Table 1.

2.2. Health feature extraction

The charge and discharge curves of a battery change as it ages. In 
practical scenarios, the discharge curve shape varies due to uncertain 
working conditions. In contrast, charging conditions are typically fixed, 
often using the CC-CV charging mode. The charging curve is relatively 
smoother compared to the discharge curve, making feature extraction 
easier. The dataset comprises information on charging time, current, 
voltage, temperature, and capacity. This serves as a crucial source of 
information for estimating the SOH of batteries. The voltage curves for 
batteries undergoing CC charging at various aging levels often exhibit 
similar and flat characteristics, which makes it difficult to identify the 
degree of battery aging. Consequently, in addition to the health features 
obtained through direct measurement, Incremental Capacity Analysis 
(ICA) is employed as a more effective approach to handle charging data 
[32]. The ICA method can transform seemingly similar and smooth 
voltage curves into a series of Incremental Capacity (IC) curves that 
exhibit peaks and valleys, which makes it convenient to identify batte
ries with different levels of aging, and the health features are obtained 
from IC curves. In this paper, the SOH can be expressed as: 

SOH =
Qnow

Qnew
×100% (1) 

In this equation, Qnew represents the nominal capacity of the battery 
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Fig. 2. Li-ion battery aging dataset: (a) Capacity of NASA dataset. (b) Capacity of Oxford dataset.

Table 1 
Comparison of the battery aging dataset.

Battery number Capacity/Ah Q range/Ah Voltage/V Cutoff voltage/V

B05 2.03 2.03 → 0.80 4.2 2.7
B06 1.85 1.85 → 0.80 4.2 2.5
B07 1.95 1.95 → 0.80 4.2 2.2
B018 1.98 1.98 → 0.80 4.2 2.2
Cell1 0.74 0.74 → 0.43 4.2 2.7
Cell2 0.73 0.73 → 0.43 4.2 2.7
Cell7 0.72 0.72 → 0.43 4.2 2.7
Cell8 0.72 0.72 → 0.43 4.2 2.7
M2038 2.4 2.4 → 1.4 4.2 3.0
M2039 2.35 2.35 → 1.4 4.2 3.0
M2041 2.35 2.35 → 1.4 4.2 3.0
M2041 2.35 2.35 → 1.4 4.2 3.0
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Fig. 3. Charging voltage curves of different datasets: (a) Charging voltage curves of cyclic aging experiment. (b) Charging voltage curves of NASA. (c) Charging 
voltage curves of Oxford.

H. Ming et al.                                                                                                                                                                                                                                    



Journal of Energy Storage 99 (2024) 113376

4

and Qnow represents the capacity obtained by measurement after aging.

2.2.1. HF related to charging time
Changes in charging time can indicate alterations in battery capacity, 

and charging time features are easily measurable. Partial charging and 
discharging modes are often applied to batteries because full charging or 
discharging takes a long time and negatively impacts battery lifespan. 
Partial charge/discharge data still contain crucial information about the 
battery's health, allowing the extraction of health features without 
losing the key characteristics of a complete cycle.

The charging voltage curves for batteries at various aging stages are 
depicted in Fig. 3. With battery aging, the charging curve gradually 
shifts to the left, and the time needed for the voltage to reach the same 
value decreases. This parameter provides an effective reflection of ca
pacity decline. EVD is defined as the time required for the same voltage 
change interval, the definition equation is as follows: 

ΔV = Vi+1 − Vi (2) 

EVD = ∣ti+1 − ti∣ (3) 

where ti+1 is the time when the voltage is Vi+1, and ti is the time when the 
voltage is Vi. The charging curves of the three different types of batteries 
show the most significant variation in the voltage range of 3.55 V–4 V. 
Therefore, in this study, the time required to charge from 3.55 V to 4 V is 
selected as the health feature EVD, as this voltage range is applicable to 
all three types of batteries. In this paper, Vi is selected as 3.55 V and Vi+1 
as 4 V.

Capacity decline is a common indicator of battery aging, resulting in 
a reduction in the maximum energy that can be stored. Consequently, 

the time to reach the preset voltage decreases, shortening the CC 
charging time (tcc). This feature directly indicates changes in the bat
tery's capacity, is easy to measure, and allows for real-time SOH 
monitoring.

Since EVD and tcc can better indicate the capacity decline and the 
features are easy to obtain. Therefore, in this paper, EVD and tcc are 
chosen as health features related to charging time.

2.2.2. HF related to incremental capacity curves
The incremental capacity curve is shown in Fig. 4. By using the ICA 

technique, it is possible to observe the changes in the IC curve at 
different aging levels [35]. The ICA calculation formula is shown below: 

dQ
dV

=
ΔQ
ΔV

=
Ic⋅dt
dV

(4) 

Q =

∫

Icdt (5) 

where, Q represents the current capacity, dV/dt is the rate of voltage 
change, and Ic is the charging current.

During the aging process, the IC curves under different aging states 
have different locations with different sizes of wave peaks, the peak of 
the IC curve (ICP) rises, the location of the peak (ICPL) increases, and the 
IC curve shifts downward gradually. These changes can be used to reflect 
the battery capacity decline. Therefore, the ICP and the ICPL are selected 
as the health features. The health features selected in this paper are 
detailed in Table 2.

2.3. Pearson correlation analysis method

Health features correlated with SOH are selected as model inputs to 
reduce model complexity and improve prediction performance. In this 
paper, Pearson correlation analysis is employed for a rapid examination 
of multiple health features [34]. The correlation coefficient between the 
two variables a = (a1, a2,…, an) and b = (b1, b2,…, bn) is shown in Eq. 
(6): 

r =
∑n

i=1(ai − a)(bi − b)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ai − a)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(bi − b)2

√ (6) 

Among them, ai and bi represent the i-th observation values for two 
variables, a and b is the mean of two variables, n represents the number 
of observations.

The correlation analysis was performed on the selected health fea
tures in this section, four parameters, EVD, tcc, ICP, ICPL were selected as 
the health features. The correlation result is presented in Table 3.
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Fig. 4. IC curves: (a) IC curves of cycling aging experiment. (b) IC curves of NASA dataset. (c) IC curves of Oxford dataset.

Table 2 
HF extracted from charging curves.

HF 
name

Illustration of HF Type

EVD The time required for the same interval of voltage 
change

Charging 
time

tcc CC charging time Charging 
time

ICP peak of the IC curve IC curve
ICPL IC curve peak location IC curve

Table 3 
The result of Pearson correlation analysis.

HF EVD tcc ICP ICPL

Coefficient 0.9987 0.9992 − 0.9558 − 0.9622
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3. Methodology

This section begins with an exposition of the basic BLS. On the basis 
of BLS, in order to obtain a satisfactory SOH estimation method, this 
paper proposes an F-BLS model integrating the regularization technique 
and trains the model using FAdaBound, an adaptive optimization algo
rithm based on AdaBound [36] and forward auto-differentiation.

3.1. Broad learning system

BLS is a neural network constructed based on the traditional Random 
Vector Functional Link Neural Network (RVFLNN). RVFLNN excels in 
overcoming long training times and showcasing high generalization 
ability during function approximation. It directly employs input data to 
construct the enhancement nodes. Building on this, BLS initially maps 
the input data to a set of features and then utilizes both the input data 
and the mapped features to construct the enhancement nodes. These 
adjustments enable BLS to perform more intricate feature extraction and 
data dimensionality reduction, thereby bolstering the model's flexibility 
and generalization ability. The network structure of BLS is illustrated in 
Fig. 5.

In BLS, it is assumed that the input data X has N samples, each with 
dimension M, and Y ∈ ℝN×C is the output matrix. For n feature map
pings, each mapping generates k mapping nodes, and the mapping 
features can be expressed as Eq. (7): 

Zi = ϕi
(
XWei + βei

)
, i = 1,2,…, n (7) 

where Wei, βei are randomly generated weights and biases with appro
priate dimensions. The mapped features form a feature mapping layer 
Z ≡ [Z1,Z2…,Zi], containing i sets of mapped features. These features Zi 
are mapped by a nonlinear transformation to generate enhancement 
nodes Hj: 

Hj = ξj
(
ZiWhj + βhj

)
, j = 1, 2,…,m (8) 

where Whj and βhj are the weights and biases associated with the 
enhancement nodes. The enhancement nodes are combined into an 
enhancement node layer H ≡

[
H1,H2,…,Hj

]
, including j groups of 

enhancement nodes. i and j can be selected based on the specific 
modeling task and the complexity of the problem. Different numbers of 
mapping features and groups of augmentation nodes can be flexibly 
selected as needed to accommodate different data and tasks.

Thus, the BLS model can be represented in the following form: 

Y = [Z1,…,Zn|H1,…,Hm]Wm
= [Z|H]Wm
= AWm

(9) 

where Wm = [Zn|Hm]
+Y is the connection weight of the output layer, and 

the broad network connection weights are obtained by solving the 
pseudo-inverse using ridge regression approximation [25]. The solution 
formula is as follows: 

A+ = lim
λ→0

(
λI + AAT)− 1AT (10) 

3.2. Forward-broad learning system

BLS is normally optimized using ridge regression[27–30], which still 
suffers from the problem of easy overfitting and unsatisfactory accuracy. 
The model proposed in this paper integrates the forward auto- 
differentiation technique and no longer needs the additional back
propagation computational process. In addition, a parameter update 
strategy [36] based on FAdaBound is applied to the proposed F-BLS 
during the forward propagation process. The F-BLS consists of three 
main parts, the base BLS, the regularized loss evaluation, and the for
ward gradient evaluation. The structure of the proposed F-BLS is shown 
in Fig. 6.

Fig. 5. Broad learning system network structure diagram.

Fig. 6. The structure of the proposed F-BLS.
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3.2.1. Base BLS
Assuming that the proposed F-BLS mathematical model can be rep

resented as ℕ(⋅; θ), Then the mapping relationship between its input and 
output can be expressed as: 

y = ℕ(x; θ) (11) 

In the equation, θ is the model parameter vector for BLS, θ ∈ ℝQ, 
where θ includes the weight parameters W and bias parameters β for the 
feature mapping layer, enhanced node layer, and output layer.

Fig. 7. Flow chart for SOH estimation.
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3.2.2. Regularization
In machine learning, regularization techniques are often used to 

reduce the risk of overfitting [37] and improve model generalization. In 
this paper, the L2 regularization loss term is embedded in the proposed 
F-BLS: 

L =
1
2
∑N

n=1
(yn − ℕ(xn; θ) )2

+
1
λ

∑Q

q
θ2

q (12) 

where N represents the number of training samples, λ represents the 
regularization coefficient, and Q represents the number of model pa
rameters.

3.2.3. FAdaBound
In this paper, we propose the FAdaBound algorithm for forward 

gradient evaluation and parameter adaptive updating. In fact, nearly all 
current gradient-based optimization algorithms require back
propagation to compute the partial derivatives of the losses with respect 
to the parameters. The backward mode of automatic differentiation 
techniques is widely successful in deep learning and is often used to 
compute Jacobian matrices [38], thus enabling fast backpropagation.

Forward propagation enables simultaneous estimation of parameter 
gradients during computation, facilitating parameter updates. This 
approach offers superior parameter optimization efficiency compared to 
backpropagation. As shown in Fig. 6, the FAdaBound can evaluate the 
gradient of the parameters ∂L/∂θq while the F-BLS forward propagation 
is computed ℕ(x; θ).

Firstly, FAdaBound samples a perturbation vector while the input 
vector Xn is accepted by Base BLS: 

v ∼ N (0, І), v ∈ ℝQ (13) 

where N (0, І) denotes a normal distribution and the scalar components 
vi of v are independent of each other and have a mean and statistics of 
0 for all i.

Secondly, the computation of intermediate variables (including Z, H, 
etc.) and partial derivatives was then performed simultaneously at each 
step of the F-BLS forward propagation. To improve optimization effi
ciency beyond backpropagation, only one forward auto-differentiation 
is performed per iteration of the optimization, instead of Q times. In 
this process, the Jacobi matrix is not given exactly, but the Jacobi vector 
product is obtained by direct computation: 

J ℕ(θ)v =

[
∂L
∂θ1

,…,
∂L
∂θQ

]
⎡

⎣
v1
…
vQ

⎤

⎦ (14) 

The partial derivatives can be taken as the directional derivative 
along a given perturbation vector v: 

ΔL(θ)v =
∑Q

q=1

∂L
∂θq

vq (15) 

where ΔL(θ)v is a scalar.
Finally, the directional derivative ΔL(θ)v is multiplied with the 

perturbation vector to obtain the forward gradient: 

F(θ) = ΔL(θ)v⋅v =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂θ1

v2
1 +

∂L
∂θ2

v1v2 + … +
∂L
∂θQ

v1vQ

∂L
∂θ1

v1v2 +
∂L
∂θ2

v2
2 + … +

∂L
∂θQ

v2vQ

…
∂L
∂θ1

v1vQ +
∂L
∂θ2

v2vQ + … +
∂L
∂θQ

vQ
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16) 
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where, F(θ) ∈ ℝQ.
The adaptive learning strategy [36] is integrated into our proposed 

forward optimization algorithm FAdaBound for updating the model 
parameters of F-BLS. The proposed FAdaBound can compute an adaptive 
learning rate for each model parameter θqΔL(θ)v from the forward 
gradient estimates at the first and second moments, q ∈ [1, 2,…,Q]. The 
pseudo-code of the FAdaBound algorithm is shown in Algorithm 1. 

Algorithm 1. Train a F-BLS by FAdaBound. 

3.3. SOH estimation

In this section, SOH estimation is performed based on the method of 
F-BLS proposed in Section 3.2. The estimation framework is shown in 
Fig. 7.

The SOH estimation framework is divided into three parts: feature 
extraction, correlation analysis, and SOH estimation based on F-BLS.

Step I: Extract four HFs related to current, charging time and capacity 
increment from the Experimental dataset, NASA battery dataset and the 
Oxford dataset.

Step II: The four HFs were analyzed by Pearson's correlation analysis, 
the selected HFs were all highly correlated with SOH, namely EVD, tcc, 
ICP and ICPL, were screened as inputs to F-BLS.

Step III: F-BLS initialization includes setting the number of feature 
mapping nodes and enhancement nodes. The input features are mapped 
using the feature mapping nodes to generate the feature mapping layer. 
The feature mapping layer is used as the input of the enhancement nodes 
and the enhancement nodes nonlinearly transform the feature mapping 
layer to obtain the enhancement node layer. The feature mapping layer 
are combined with the enhancement node layer into the input matrix. 
The weights of F-BLS are initialized, and the FAdaBound algorithm is 
employed for forward gradient evaluation and parameter adaptive 
updating. The weights of F-BLS are obtained through training data. After 
completing the training of F-BLS on the training set, SOH estimation is 
performed based on the trained model and validate the proposed SOH 
estimation method's performance using the test set.

4. Results and discussions

This section provides thorough comparative tests, accompanied by 
detailed results and analysis. Firstly, a brief description of the 
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performance metrics used to evaluate the different methods will be 
presented. Subsequently, the performance of F-BLS is evaluated, and 
error analysis is performed using multiple batteries from three datasets. 
Lastly, the comparison methods, RVM [39], and GPR [40], are 
introduced.

4.1. Evaluation criteria

To assess the estimation accuracy of the algorithm for SOH, this 
paper employs mean absolute error (MAE), root mean square error 
(RMSE), and R2 (R-square) to quantify the estimation error. The formula 
is shown below: 

MAE =
1
n
∑n

i=1
∣Ci − Ĉi∣ (17) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ci − Ĉi)

2

√

(18) 

R2 = 1 −

∑

i
(Ĉi − Ci)

2

∑

i
(Ci − Ĉi)

2 ×100% (19) 

In this equation, n represents the size of the sample, Ci represents the 
true capacity of the i-th cycle, Ĉi is the actual capacity, and C is the 
average capacity. The diminution of MAE and RMSE corresponds to a 
reduction in the estimation error of SOH, indicating that the estimation 
method performs well. Additionally, the greater the magnitude of the 
coefficient of R2, the heightened the degree of fit exhibited by the model, 
suggesting a more precise estimation approach.

4.2. Estimation results

In this section, the proposed SOH estimation method is tested on 
three datasets. The batteries labeled M2038, M2039, M2041, and 
M2042 are denoted as 1#, 2#, 3#, and 4# respectively. The batteries 
from the NASA dataset B05, B06, B07 and B018 are labeled as 5#, 6#, 
7#, and 8#, while those from the Oxford dataset Cell1, Cell2, Cell3 and 
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Cell4 are labeled as 9#, 10#, 11#, and 12#. The feature mapping nodes 
of F-BLS are set to 7, and the enhancement nodes are set to 50.

In the cyclic aging dataset obtained from the experiments, the model 
was trained using battery 1#, and its performance was verified using 
batteries 2#, 3#, and 4#. As depicted in Fig. 8, the SOH estimates 
exhibit the same declining trend as the actual data, with estimation 
errors consistently within ±1.5 %. This indicates that the method pos
sesses the capability to accurately estimate the SOH and demonstrates 
superior reliability and stability.

Fig. 9 displays the full-life SOH prediction results for battery units 
6#, 7#, and 8# using battery 5# for training, while Fig. 10 illustrates 
the SOH prediction results for battery units 10#, 11#, and 12# using 
battery 9# for training. In comparison with the actual data, the proposed 
F-BLS method demonstrates exceptionally high prediction accuracy for 
various datasets, with the error between estimated and actual values 
consistently within ±1 %.

To further validate the effectiveness and accuracy of F-BLS, 
commonly used SOH estimation data-driven methods, including RVM 
and GPR, are employed for comparison. Fig. 11 displays the results and 
estimation errors of SOH estimation using various methods. It is evident 
that F-BLS holds a significant advantage over other methods in terms of 
estimation accuracy and effectively minimizes bias in the estimation 
results. This paper uses MAE, RMSE, and R2 to quantify estimation er
rors. The corresponding values are presented in Fig. 12. The results 
demonstrate that, compared to other methods, the F-BLS proposed in 
this paper significantly reduces the SOH estimation error, with MAE and 
RMSE values below 0.02. Overall, the test results indicate that F-BLS 
exhibits high estimation accuracy and exceptional generalization 
ability.

5. Conclusion

This paper introduces an F-BLS-based framework for estimating the 

SOH of lithium-ion batteries. The methodology employs forward auto- 
differentiation to optimize the BLS. SOH-related features are extracted 
from datasets sourced from three datasets. After Pearson correlation 
analysis, features strongly correlated with capacity decline are selected 
as inputs for the F-BLS. The F-BLS incorporates regularization tech
niques and leverages FAdaBound, an adaptive optimization algorithm 
based on forward auto-differentiation, significantly enhancing predic
tion accuracy and model generalization. To evaluate the method's effi
cacy, we validate it using the cyclic aging dataset from the experiment, 
along with NASA and Oxford battery datasets. The results are compared 
with two commonly used data-driven methods, indicating superior 
estimation accuracy of the F-BLS. Furthermore, it maintains robust 
prediction performance across various battery datasets, with RMSE 
below 0.03 and MAE values below 0.02, underscoring its high gener
alization ability. This research contributes to achieving rapid, real-time 
estimation of battery SOH.

Future work will include conducting aging experiments under 
various working conditions using diverse batteries to validate further 
the accuracy and generalization of F-BLS.
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