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SCLF: Self-Contrastive Learning Framework for
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Abstract— Hydrogen leakage traceability is crucial to ensuring
hydrogen safety in the whole process of hydrogen production—
storage—transport-application. However, due to the high cost of
dismantling and testing, it is impractical to collect and label
leakage locations for different leakage conditions. Traditional
supervised learning methods lack generalization performance
due to the difficulty of obtaining effective training on a limited
number of labeled hydrogen leakage samples. Therefore, a self-
contrastive learning framework (SCLF) is proposed in this
study. Upstream of SCLF, a time—frequency fusion representation
method based on self-contrastive learning (CL) is proposed
to enhance domain-independent feature extraction, and a pre-
trained model (TF-FRM) is developed. Downstream of SCLF,
a multirulebase fuzzy locator (MR-FL) based on fuzzy logic is
proposed, which can locate the position of hydrogen leakage
accurately by the representation based on TF-FRM. Finally,
the proposed SCLF is tested on a real sensor signal, and its
interpretability is also analyzed. Compared with other models,
the SCLF demonstrates superior generalization, accuracy, and
interpretability with limited supervised samples, achieving an
average F1 score of 95.59%.

Index Terms— Contrastive learning (CL), hydrogen safety,
interpretability, representation learning.

I. INTRODUCTION

YDROGEN energy is green, low-carbon, and widely

used with profound implications for addressing the
depletion of fossil fuels and the global warming crisis [1].
As one of the most important carriers for the global energy
transformation, hydrogen helps enable a transition to a net-zero
carbon circular economy. However, hydrogen energy is facing
increasing safety concerns, which are seriously hampering its
further widespread applications [2].

Hydrogen normally exists at high pressure in the process of
production—storage—transport—application and hydrogen leak-
age occurs from time to time. Due to the unique physical and
chemical properties of hydrogen, combustion or even explosive
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accidents will occur when the leaking flammable hydrogen
cloud encounters the ignition source, which directly threatens
the safety of human life [3], [4], [5]. Quickly and accurately
detecting and recognizing leakage faults before a hydrogen
safety accident occurs, so that appropriate emergency plan-
ning measures can be taken. This will directly contribute to
preventing further deterioration of the accident and reducing or
even avoiding damage to life and property. Therefore, research
on hydrogen leakage traceability is crucial to ensure the safety
of the whole hydrogen energy industry chain and promote the
sustainable development of hydrogen energy.

Hydrogen leakage traceability refers to the process of using
certain technologies or methods to trace the source of a
hydrogen leakage. In the field of hydrogen industry, especially
in the case of hydrogen safety and environmental protection,
hydrogen leakage traceability is important [6]. In recent years,
the rapid development of artificial intelligence technology has
made many researchers increasingly interested in developing
new hydrogen leakage tracing methods.

Based on signals such as hydrogen concentration data col-
lected by distributed sensors, machine learning (ML) [7] has
been applied to the detection and identification of hydrogen
leakage. Tian et al. [8] proposed a data-driven method based
on a relevance vector machine for the leakage diagnosis
of 70-MPa hydrogen storage tanks in hydrogen fuel-cell
vehicles (HFCVs). Zhao et al. [9] studied the accuracy of K-
nearest neighbor (KNN) and dynamic time-warping (K-DTW)
algorithm for hydrogen leakage traceability in a confined
space. Dhimish and Zhao [10] proposed a leakage detection
and classification method based on an artificial neural network,
and its effectiveness was verified on a 3-kW proton exchange
membrane hydrogen fuel-cell system. However, ML usually
requires more manual processing and expertise in feature
engineering, which limits the accuracy of the above methods.

The deep learning (DL) [11], [12] with excellent adaptive
feature extraction can reduce the reliance on manual feature
extraction and physical modeling by experts [13]. As a result,
DL-based methods have gradually become the mainstream
paradigm for hydrogen leakage traceability. Deep belief neural
network [14] were used in solid oxide fuel-cell systems.
Taking renewable power-to-hydrogen system as the research
target, Shi et al. [15] proposed a graph deep probability
learning method to model the spatial-temporal dependence
between the sequence data of different sensors, to obtain
more comprehensive fault characteristics. Similarly, Li et al.
[16] proposed a DL method based on gate recurrent unit
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network acquiring spatial-temporal features automatically for
the diagnosis task of fault in HFCVs. Recently, some feature
processing techniques in the field of computer vision (CV)
[17], [18], [19] have also been applied to the research of hydro-
gen leakage fault diagnosis. These studies typically combined
multichannel sensor sequence data into images and then used
convolutional neural networks (CNNs) to process the features.
Bi et al. [20] proposed a hybrid DL model based on the CNN
and long short-term memory (LSTM) network to accurately
and efficiently detect and locate hydrogen leakage in hydrogen
refueling stations (HRSs). As a CV classical model, ResNet
was exploited by Yang et al. [21] to extract the distribution
features from the hydrogen concentration sequences, combined
with KNNs to identify the location and intensity of hydrogen
leakage in HRSs. However, a large amount of data with labeled
hydrogen leakage location is necessary for the above DL-based
methods for model training and to accommodate deviations in
data distribution under different hydrogen leakage conditions.
In practical hydrogen application scenarios, most hydrogen
energy systems were required to be equipped with monitoring
devices to ensure safety. These monitoring devices stored
hydrogen concentration data by distributed sensors under nor-
mal conditions and leakage conditions. Unfortunately, workers
were unable to find the exact location of the leakage when the
leakage failure occurred, that is, manually labeling the leakage
location of a large amount of hydrogen concentration data was
expensive and not feasible. Therefore, there are the following
unresolved problems for leakage traceability methods.

1) The characteristics of hydrogen sensor signals have
not been fully studied, and the information features of
multisource sensors have not been fully utilized, which
will cause the generalization performance of leakage
traceability methods to decline.

2) The DL is the mainstream paradigm in hydrogen leakage
traceability and is often regarded as a opaque model
without interpretability. The decisions of DL-based
methods cannot be understood by humans, which will
introduce a new risk point, and is detrimental to the
safety of hydrogen.

3) Due to the high cost of dismantling and manual label-
ing, it is difficult to provide target-domain information
containing all leakage locations for hydrogen leakage
traceability methods. It is an urgent problem to reduce
the dependence on supervised signals of hydrogen sen-
sors.

To overcome these problems, a self-contrastive learning
(CL) framework for hydrogen leakage traceability is proposed
in this article. To our knowledge, this is the first report of
CL in the field of hydrogen safety. Meanwhile, this study
explores the interpretability of hydrogen leakage traceability
first. Specifically, the main contributions and innovations of
this article are as follows.

1) A time—frequency fusion representation method based
on CL is proposed, which generates homogeneous and
heterogeneous information of the hydrogen concentra-
tion sensor signal from the time and frequency domains
to construct self-contrast pairs.
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Fig. 1. Framework structure of the proposed SCLF. The black arrows indicate
forward propagation, while the red arrows denote backpropagation.

2) A multirulebase fuzzy locator (MR-FL) based on fuzzy
logic is proposed to deal with traceability tasks down-
stream according to representational information, and its
interpretability advantages are discussed.

3) A self-CL framework (SCLF) is established, and a
data-driven learning strategy of SCLF is developed to
combine self-supervised learning and supervised learn-
ing.

The rest of the article is organized as follows. Section II
describes the problem of hydrogen leakage traceability.
Section III establishes the proposed SCLF. Experiments and
analyses are described in Section I'V. Section V concludes the
article.

II. PROBLEM DESCRIPTION

In order not to lose commonality, J is used to represent
the number of channels of the distributed sensors in hydrogen
safety monitoring devices and L is used to represent the
number of sampling points of each channel. Then, each sample
of multisource hydrogen concentration sensor sequence data
can be represented as a matrix

X1,1 X1,2 X1,L
X2,1 X2,2 X2,L

x=| . . . - (D
XJ,1 XJ2 XJ,L

The hydrogen leakage traceability aims to obtain a
parameterized model M (6;-) to map multisource hydrogen
concentration sensor data to the specific leakage location

[y*, y']=M@®;x) 2)

where x € R/*L, y¥ y7 s, respectively, the X coordinates and
Y coordinates of the leakage location, 6 is the parameter of
M, and y* € N,, y” € N,. The challenge of this problem is
how to ensure the accuracy of leakage tracing in the absence
of target domain information.

III. FRAMEWORK

An SCLF is proposed to solve the problem of hydrogen
leakage traceability described in Section II, as shown in Fig. 1.
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A. Overview of the SCLF Framework

In the proposed SCLF, hydrogen leakage traceability is
divided into upstream and downstream subtasks, as shown in
Fig. 1.

Upstream, the representational time and frequency infor-
mation of hydrogen concentration data is generated based on
the proposed method in Section III-B by way of comparative
learning, which is the key to maintaining good generalization.
First, the representational domain of the hydrogen sensor sig-
nal is extended by fast Fourier transform (FFT) [22]. Second,
data augmentation for raw concentration sequence and its
discrete spectrum is used to reduce the dependence on hydro-
gen concentration data under different leakage conditions.
Then, the time encoder and the frequency encoder learn the
representations in independent time and frequency domains,
respectively. Finally, the time projector and frequency projec-
tor map the independent time and frequency representations
into a time—frequency domain joint space, to generate a fusion
representation of time and frequency.

Downstream, two locators are developed based on the
proposed MR-FL in Section III-C to locate the position of
hydrogen leakage accurately. First, the fusion representations
of time and frequency are connected as input features, which
will be seen as the input feature of each locator, as shown in
Fig. 1. Then, two MR-FLs learn the law between the input
feature and the corresponding leakage location by supervised
learning. Finally, the specific location of hydrogen leakage can
be determined according to the X and Y coordinates predicted
by the two MR-FLs.

B. Time—Frequency Fusion Representation Method

In recent years, some improved CL-based methods [23],
[24] have been gradually applied to pattern recognition tasks
in the industrial field [13], [25], such as domain-adaptive CL
(DACL) [26] and conditional contrastive domain generaliza-
tion (CCDG) [27]. CL-based methods have more significant
generalization ability compared with DL- and ML-based
methods [13]. Therefore, CL has the potential to solve the
challenges of hydrogen leakage traceability.

Contrastive learning in time
and frequency domain
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Contrastive learning in Contrastive

time-frequency domain joint space loss

Illustration of the proposed time—frequency fusion representation method. The pretrained model TF-FRM comprises a time encoder A, a frequency

However, the characteristics of the hydrogen sensor signals
have not been fully studied. Only a single time domain
can be used to produce comparison pairs, and the structural
information of the raw hydrogen concentration data cannot
be fully represented, which will directly lead to failed CL.
Therefore, a time—frequency fusion representation method is
proposed in this study.

Assume that N unlabeled multisource hydrogen concen-
tration data samples are collected from the data acquisition
system and expressed as Xpe = {x;[i = 1,2,..., N}.

1) Fast Fourier Transform: The frequency domain of the
sensor signal is considered to obtain more structural informa-
tion about the raw data and to achieve effective comparative
learning. FFT is used to calculate the discrete spectrum of
the raw data, as shown in Fig. 2. The raw sequence data
is represented as x[T = x;, and, correspondingly, the discrete
spectrum is represented as xlF , that is,

xf = FFT(x;). (3)

2) Data Enhancement: In the time domain, using jittering
[28], scaling [29], time shifts, and neighborhood segments
[30] exposes Nt to more complex temporal dynamics. xiT
with ~ means time enhancement of the raw data, that is, J?:r .
In the frequency domain, xiF can be enhanced by adding
or deleting the frequency component to disturb the discrete
spectrum of the raw hydrogen concentration sequence data.
The frequency enhancement is represented as X; .

3) CL in the Time Domain: To learn the temporal represen-
tations of the raw data, the time encoder Ny maps xiT and its
enhancement X, to the representations /] and & in the time
domain and can be expressed as

hl = NT(QNT; XiT); il? = NT(QNT; )'CV,T) “4)
where NV1(Ont; ) is the mathematical model of the backbone
network based on the Transformer [32] and Oy is the parame-
ter of N1. For another sample xJT and its enhancement )“cjjr s h},
and INzJT are generated by At. The positive pair of CL in the
time domain is defined as (h], EI.T), while the negative pairs
are (hiT,h]T) and (hiT,th). The contrastive loss in the time
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domain is proposed to guide Nt to learn the representations
of time-enhanced invariance and can be expressed as

L;r = NT-Xent(hiT, E;F’ Xpre)
exp(sim(h], fllT)/f)
2 TeXy, 0ijeXP (Sim(hiT’ N (ONT; xj ))/ T)
(5)

where 7 is a temporal parameter to adjust scale, §;»; is an
indicator function, that equal O if i # j; otherwise, equal to
1; sim(u, v) = u”v/||u||||v]| denotes the cosine similarity.

4) CL in the Frequency Domain: The frequency encoder
Ng maps x] and its enhancement X} to the representations /}
and hf in the frequency domain

h; = NF(QNE xf); = NF(QNF; )AC:F) (6)

The contrastive loss LiF is proposed to guide Nr to learn the
representations of frequency-enhanced invariance

LY = NT-Xent(h, hf, X

= —log

Xpre)
exp (sirn(h}:, EF)/‘E)

xipexpméi#jexp(sim(h NF(QNF, .))/r)
(N

5) Comparative Learning in Time—Frequency Domain Joint
Space: Representations in the time and frequency domains
are mapped to a joint space by the time projector Rt and
the frequency projector Rp, to ensure that the distance of
representations between different domains is measurable

& =Re(Orrs h)): 7} = Re(Orr: ) ®)
zj = Re(res hf); 2 = Re(Ores 1)) )

where z; and z} are the time representations and frequency
representations of joint space, respectively, ?lT and Zf are
the corresponding enhancements, Rr(0rr; -) and Rgr(6rr; -)
are the mathematical model of the time projector and the
frequency projector, respectively, and Ogr and Ogy are learnable
parameters. The contrastive loss in the time—frequency domain
joint space L" is proposed to realize the fusion of time and

frequency representations, as follows:

= —log

TF,T,F

L;rF _ LTFTF 4L + LiTF,T,T: (10)
where
Ll.TF’T’f: = NT-Xent(z/, 2, Xpre)
— NT-Xent(z], Z}, Xpre) + ¢ (11
LI.TF’T’F = NT-Xent(z/, 2} , Xpre)
— NT-Xent(z}, 2}, Xpre) + & (12)
LTFTF = NT-Xent(], 2F Xpre)
— NT-Xent(z], Z}, Xpre) + & (13)

where ¢ is a given constant margin. According to (10),
the contrastive loss LiTF is used to minimize the distance
between z; and zf, while pursuing the distance between larger
enhanced representatlons that is, z and ZF and z , as well
as Z! and ZF
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Algorithm 1 Pretrain a TF-FRM Model

Require:
Xpre = {xili =1,2,..., N}: dataset; Ny: size of batch;
K: the maximum epochs; Adam optimizer.

Initialize:
ONT, ONF, Orr and Orp are randomly initialized.
Compute:
fork=1,...,K do
Np,s samples were randomly selected from X ;
fori=1,..., Ny do

xf < x, xF < FFT(x,-);

Obtain )?:T and )’ZZ.F of x and x
hl < Nr(6x1: x); b} <—NF(9NF, K

AT <—NT(9NT;3€€T)» hi < Ny (Onr: X7):
; 2} < Re(brr: 1))

Calculate LiT LF
2} < Rer(brrs b,
’Zir <~ RT(QRT, f Z < RF(QRF, h)
Calculate LTFTF L, TF.T.F and LTFTF
L;rF - LTFTF+ TFTF+LTFTU

«~ A(L,T + LY+ A - ML,
Update 9NT7 QNF’ QRT, QRF via Adam [31]

~ Oy

)

end
end

Finally, the proposed time—frequency fusion representation
method guides the TF-FRM model to pretrain on unlabeled
hydrogen concentration data (i.e., Xyre) and minimize the total
loss L®

R=XL]+L))+a—-nL" (14)

where )\ is used to control the relative importance. Detailed
steps are given in Algorithm 1.

C. Multirulebase Fuzzy Locator

Assume that the dataset composed of the multisource hydro-
gen concentration data with the leakage location label can be
expressed as Xgne = {x/, ¥/ }lNZ’ \» where N’ is the number of
samples. For the ith sample, TF-FRM calculates the time and
frequency representations, that is, z;' and z¥, respectively,
which are treated as inputs to the proposed MR-FL and
expressed as z; = [z/T, zF], where z; € R? and D is the
dimension of z.

Assuming that there are C hydrogen leakage locations,
the proposed MR-FL will adaptively generate C rulebases,
as shown in Fig. 3. The cth hydrogen leakage location is
identified by the cth rulebase. Each rule has the construction
form of IF-THEN [33], [34], take the rth rule in the cth
rulebase as an example

IF :z;  is X,;, and,...,

D
THEN :yf (z}) = bS + Dy X 24
d=1

and z; j, is f,,D
(15)

where b; and wj ; are bias and weight parameters of the rth
rule, respectively, and X, ; is a fuzzy set [35] used to calculate
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Fig. 3. Schematic of the proposed MR-FL.

the membership degree w of z;,. For all rules in the cth
rulebase, the bias parameters form a vector b¢ € R¥ and the
weight parameters form a matrix w® € R®*P, The output of

R rules can be computed as
Vg = oz + b° (16)

where yg € RR. Each rule of each rulebase is fired by firing
degree F, of inference
R
Yo =D Frxy (17)
r=1

where 34, € R, 3¢ € RX, and F. € RR. The aggregate output

of all rulebases is expressed as y© = [i}e, . ..,ig] e RC.
Then, ¢ is convert to y© by Softmax as follows:
exp(y%
yo = 220 (s)

X exp(7)

where y¢ e RC. Finally, the predicted hydrogen leakage
location y € N of MR-FL is obtained by argmax [36]

¥ = argmax(y©). (19)

The detailed mathematical model of MR-FL is given in
Algorithm 2.

D. Data-Driven Learning Strategy of the SCLF

The SCLF is required to complete self-supervised learning
and supervised learning tasks in the upstream and downstream,
respectively. Therefore, the data-driven learning strategy of the
SCLF is developed, which adopts the pretraining + fine-tuning
mechanism and divides the learning task into three stages,
as shown in Fig. 4.

In the first stage, the TF-FRM model consisting of N7,
NE, Rr, and Rp is pretrained on the multisource hydro-
gen concentration data without labeled leakage location (i.e.,
Xpre = {xili = 1,2,..., N}). Despite the lack of supervi-
sory signals to guide TF-FRM model training, CL loss (i.e.,
L*), encourages the TF-FRM model to fuse representational
information of multiple domains and enrich the feature scales,
which is beneficial to improving generalization performance.

In the second stage, the TF-FRM model and two MR-FLs
are fine-tuned on the multisource hydrogen concentration data
with labeled leakage location (i.e., Xane = {x/, v/, 7' }1¥)).
First, the time and frequency representations (i.e., z;) are

3531113

Algorithm 2 Mathematical Model of MR-FL

Require:

z, e RP.

Compute:

forr=1,2,...,R do
ford =1,2,...,D do

_ ’ (Z;Ad_c'-d)z
1%, (2a) < exp| == |,
end
end
forr=1,2,...,R do
D
‘ Fo(z) < [z vx,, (24);
end
forc=1,2,...,C do
T (o Frz) .
Fr(Zi) <~ z}i] Fk(Z;)’
forr=1,2,...,R do
‘ Ve e @y g X Zig + b7

end

Vo < 20 Fr X y5
end
¥ < [Tk VR

c exp(Fr) .
YT S ()
Yy <« argmax(yc).

generated by the pretrained TF-FRM on Xg,.. Second, z;
is seen as the input feature of two MR-FLs. Third, specific
leakage locations can be predicted by two MR-FLs. Then,
the cross-entropy loss [37] is used to minimize the difference
between the real leakage location and the predicted leakage
location. Considering that learning the data distribution of the
fine-tuning dataset is beneficial to TF-FRM, the model param-
eters of the pretrained TF-FRM are also further optimized and
adjusted. Finally, according to the CL losses and cross-entropy
loss, all parameters of the TF-FRM model and two MR-FLs
are optimized and adjusted by the Adam [31] optimizer in the
same backpropagation.

In the third stage, a well-trained TF-FRM model and two
MR-FLs are evaluated on the testing dataset, and the perfor-
mance is measured by statistical indicators.

IV. EXPERIMENT

The hydrogen leakage experiment was conducted in
a specific hydrogen energy application scenario, that is,
an underground garage and 827 sets of real concentration
sensor signals were collected. Then, comparison and ablation
experiments were performed to verify the performance of the
proposed SCLF.

A. Setup

A 1:24 scale underground garage model was designed and
constructed to reproduce the hydrogen leakage and diffusion
behavior of HFCVs in confined space in practical applications,
as shown in Fig. 5. The size of the underground garage model
was 24 x 150 x 250 cm?, and there was an opening with a
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Illustration of the data-driven learning strategy. In the first stage, the TF-FRM is pretrained using multisource hydrogen concentration data without

labeled leakage locations. In the second stage, both the TF-FRM and the two MR-FLs are fine-tuned on multisource hydrogen concentration data with labeled
leakage locations. In the third stage, the well-trained SCLF is evaluated on the testing dataset. In this figure, the black arrows indicate forward propagation,

while the red arrows denote backpropagation.

length of 24.4 cm and a height of 13.3 cm to maintain the
pressure balance in the space during the experiment. There
were a total of 80 parking spaces where HFCVs with potential
hydrogen leakage parked.

The experiment was conducted in an indoor environment
with a temperature of 24 °C and a humidity of 55%. Helium,
which is physically close to hydrogen, was used as an alterna-
tive gas for hydrogen in consideration of experimental safety.
A typical family car model (MINI COOPER, 1/24) was used
as the leaking HFCVs in the experiment. As shown in Fig. 5,
the leak point was placed at the bottom of the vehicle model to
simulate the most common and dangerous leakage conditions.
A standard 40-L helium cylinder with a flow rate of 3.4 SLPM
was used to create a momentum-dominated leak jet from a
35-MPa hydrogen storage tank. The experimental system used
reducing valves, pressure transducer, and other instruments to
ensure the stability of the flow during the experiment.

Twelve concentration sensors (XEN-TGC3880Pt) were
equipped to measure the helium concentration of the HFCV
model after leakage. All sensor was installed on the ceiling
of the garage model to minimize the impact on airflow. The
data acquisition system of Agilent (34970A) was used to
communicate with the distributed sensor and obtain the sensor
signal in real time, with a frequency of 1.4 Hz. Before the start
of each experiment, the sensors were calibrated according to
the method described in [9], and the voltage signals of sensors
were converted into the concentration signals of helium. The
collected distributed helium concentration data was stored in
a computer.

B. Comparison Methods and Evaluation Indicators

1) Comparison Methods: To fully evaluate the perfor-
mance of the proposed framework, the SCLF is compared
with ML-based methods, DL-based methods, and CV-based
methods. Specifically, ML-based methods include multilayer

Reducing
value ‘(‘\\‘

6cm

Pressure Pressure transducer Needle

gauge # valve

| SR Y
Pressure Electronic \wr Leak point

relief value  flowmeter

Fig. 5. Schematic of the experimental system.

perceptron (MLP) [9], K-DWT [9], support vector machines
(SVMs) [38], and extreme learning machine (ELM) [39].
ML-based methods extract features manually according to
the method in [9]. DL-based methods include LSTM [20]
and Transformers [32], which require no additional feature
processing and treat the complete hydrogen concentration
sequence data as the input of the model. Classical CV-based
methods include CNNs [20] and ResNet [21], which treated
hydrogen concentration sequence data collected from 12 dis-
tributed sensors as single-channel images as input. In addition,
227 sets of real sensor signals are labeled with the leakage
locations, manually. The remaining sensor signals are used
for pretraining of the proposed SCLF.

The hyperparameter settings for the SCFL are provided
as follows. In the TF-FRM, the network architectures of the
time encoder and frequency encoder are adopted from [32],
while the network architectures of the time projector and the
frequency projector are illustrated in Fig. 6. The batch size for
both the pretraining and fine-tuning processes is determined
based on the recommendations in [33]. Since the number of
rulebases (i.e., C) in MR-FL adaptively varies with the number
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TABLE I
PERFORMANCE INDICATORS (X-COORDINATE)
K-DWT ANN SVM ELM LSTM Transformer CNN ResNet SCLF

Accuracy train | 0.867240.0321 0.94414-0.0437 0.8647+0.0103 0.8478+0.0191 1.0000£0.0000 1.000040.0000 1.0000+0.0000 1.0000£0.0000 0.9805+0.0011
test | 0.6832£0.0145 0.7264+0.0119 0.636740.0148 0.7290+0.0214 0.7732+£0.0095 0.8632+0.0391 0.864240.0247 0.86194+0.0784 0.9090+0.0117

Precision train | 0.8358+0.0213 0.70314+0.0197 0.7053+0.0104 0.7282+0.0093 1.0000£0.0000 1.000040.0000 1.0000£0.0000 1.0000=£0.0000 0.9229+0.0201
test | 0.6313£0.0152 0.791240.0394 0.8038+0.0123 0.70401+0.0561 0.7893+0.0338 0.7731£0.0428 0.812640.0142 0.819140.0457 0.9540+0.0119

Recall train | 0.797540.0493 0.78184+0.0579 0.7737+0.0105 0.7587+£0.0094 1.0000£0.0000 1.00004-0.0000 1.0000+0.0000 1.0000£0.0000 0.9282+0.0304
test | 0.7758+£0.0143 0.769640.0452 0.812940.0125 0.7246+0.0109 0.8605+£0.0589 0.8473+0.0583 0.896240.0302 0.84151+-0.0141 0.9543+0.0203

F1 score train | 0.798040.0414 0.733740.0458 0.7286+0.0102 0.7349£0.0100 1.0000£0.0000 1.00004-0.0000 1.0000+0.0000 1.0000=£0.0000 0.9249+0.0211
test | 0.7064£0.0144 0.7153£0.0146 0.878340.0125 0.7071+0.0106 0.7546£0.0162 0.7929£0.0604 0.843540.0203 0.828240.0585 0.9540+0.0149

AUROC train | 0.87634+0.0319 0.854740.0382 0.8856+0.0114 0.8760£0.0108 0.9991£0.0098 1.000040.0000 1.0000£0.0000 1.0000=£0.0000 0.9991£0.0213
test | 0.8096+£0.0376 0.796540.0242 0.879440.0123 0.8558+0.0107 0.9375+0.0131 0.9371£0.0092 0.97154+0.0146 0.91714+0.0154 0.9892+0.0406

AUPRC train | 0.886540.0513 0.846010.0334 0.8607+0.0109 0.8181£0.0098 0.9984+0.0109 1.00004-0.0000 1.0000+0.0000 1.0000-£0.0000 0.9945+0.0204
test | 0.7983£0.0237 0.747540.0163 0.84634+0.0121 0.72324+0.0105 0.8475+£0.0224 0.9147£0.0163 0.838740.0127 0.827240.0222 0.9643+0.0174

of leakage locations, the number of rulebases for the MR-FL
used to locate the X-coordinate is set to 20, while that for
the other MR-FL is set to 4. Sensitivity analysis is conducted
for several critical hyperparameters, including the number of
time—frequency features (i.e., D), the weight coefficient of the
contrastive loss (i.e., A), and the learning rate of the Adam
optimizer [31], as detailed in Section IV-F.

All comparison experiments were conducted on a desktop
computer with an i5-12600KF Intel processor, 32 GB RAM,
and RTX 4060 Ti GPU. All comparison methods were imple-
mented in Python.

2) Evaluation Indicators: To accurately measure the per-
formance of the proposed SCLF and comparison methods, six
different indicators are used in the experiments to comprehen-
sively measure the recognition performance, which includes
accuracy, precision, recall, F'1 score, AUROC, and AUPRC.

C. Comparative Experimental Results and Analysis

The performance of ML-based methods, DL-based methods,
CV-based methods, and the proposed SCLF on hydrogen
leakage traceability task is evaluated. To enhance the rigor
and reliability of the experimental results and further validate
the superior performance of the proposed SCLF, we conducted
sixfold cross-validation and provided corresponding statistical
results in the comparative experiments.

First of all, Tables I and II, respectively, provide six statis-
tical indicators of X and Y-coordinates predicted by different
methods. The proposed SCLF achieves the best performance
in the hydrogen leakage traceability task, with an average
F1 score of 95.59%. DL- and CV-based methods often have
better performance than ML-based methods. For example, the
accuracy of LSTM, Transformers, CNNs, and ResNet can
even reach 100% during the training phase. This is because
DL- and CV-based methods have better adaptive feature
extraction capabilities than ML-based methods, which is criti-
cal for accurately identifying leaking information. Although
the proposed SCLF fails to obtain sufficiently compelling
training indicators, its test performance is the most significant,
especially in comparison with DL- and CV-based methods.

For example, the F'1 score of the proposed SCLF decreases
by 4.41% compared to ResNet during the training phase, but
improves by 8.82% during the testing phase, as shown in
Tables I and II. This means that the proposed SCLF has
more significant generalization performance, that is, it can
still predict the leakage locations accurately on unanticipated
hydrogen concentration data.

D. SCLF with Spatial Features

Hydrogen concentration signals are collected through dis-
tributed sensors, where the relative positions and relationships
between sensors often contain critical information that may
facilitate hydrogen leakage traceability. To further analyze
multisource hydrogen concentration data, an SCLF with spatial
features (SCLF-SF) is proposed. Specifically, the multisource
data collected by distributed hydrogen concentration sensors
are modeled as a graph structure, where each sensor is
represented as a node, and the node features correspond to
the concentration signals of the sensors. The edge weights
between nodes are determined by the Euclidean distance
between the sensors. This graph structure effectively captures
the spatial relationships within the sensor network, providing
essential topological information for subsequent hydrogen
leakage traceability tasks. To incorporate the spatial features
of multisource hydrogen concentration data, necessary modi-
fications were made to the previous SCLF. Specifically, graph
convolutional networks (GCNs) are employed to replace the
Transformer as the backbone network for the time encoder
and the frequency encoder in Fig. 2. This is because GCNs
are generally regarded as a promising approach for capturing
spatial dependencies between sensor signals [40], [41]. The
details of these modifications are illustrated in Fig. 6.

The experimental results demonstrate that the proposed
SCLF framework maintains robust performance even after
replacing its backbone encoder, highlighting the architectural
resilience of SCLF. However, although SCLF-SF shows poten-
tial in capturing spatial features, its performance improvement
in hydrogen leakage traceability tasks is not statistically sig-
nificant. Specifically, on the test set, SCLF-SF achieves the
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TABLE I
PERFORMANCE INDICATORS (Y -COORDINATE)

K-DWT

ANN

SVM

ELM

LSTM

Transformer

CNN

ResNet

SCLF

train
Accuracy

test

0.7897+0.0362
0.683310.0481

0.74954-0.0523
0.728040.0427

0.9816+0.0046
0.7276+0.0481

0.847010.0301
0.682440.0504

1.00004-0.0000
0.773440.0463

1.0000+0.0000
0.8640+0.0387

1.0000+-0.0000
0.8185+0.0340

1.00004-0.0000
0.864140.0306

0.9819+0.0056
0.9548+0.0049

. train
Precision
test

0.8127+0.0383
0.5198+0.0461

0.780740.0470
0.745040.0530

0.9769+0.0032
0.6989+0.0475

0.7555+0.0357
0.483140.0518

1.0000£0.0000
0.8008+0.0390

1.0000£0.0000
0.8379+0.0446

1.0000£0.0000
0.75154+0.0397

1.0000£0.0000
0.875340.0229

0.9694+0.0063
0.9520+0.0044

train
Recall
test

0.69384-0.0440
0.651540.0451

0.811240.0332
0.87054-0.0294

0.9825+0.0023
0.8426+0.0406

0.702940.0297
0.5618+0.0513

1.0000+0.0000
0.750740.0399

1.0000+0.0000
0.8436+0.0377

1.00004-0.0000
0.822140.0351

1.0000+-0.0000
0.8994+4-0.0287

0.9858+0.0030
0.9683+0.0035

train
F1 score

test

0.6986+0.0373
0.5663+0.0471

0.727040.0347
0.618610.0432

0.9762+0.0046
0.7995+0.0396

0.708540.0311
0.507440.0459

1.00004-0.0000
0.7466+0.0382

1.0000+0.0000
0.8180+0.0314

1.0000+0.0000
0.7627+0.0369

1.00004-0.0000
0.914940.0204

0.9765+0.0061
0.9577+0.0057

train
AUROC

test

0.962510.0034
0.92984-0.0185

0.93914+0.0173
0.8969+0.0214

0.9781+0.0023
0.9491+0.0107

0.997010.0012
0.92604-0.0202

0.999540.0004
0.9378+0.0116

1.000040.0000
0.9629+0.0078

1.0000£0.0000
0.972340.0054

1.0000+0.0000
0.9889+0.0043

0.9999+0.0003
0.9839+£0.0026

train
AUPRC
test

0.891940.0065
0.8707+0.0183

0.88114-0.0082
0.847410.0124

0.8980+0.0043
0.8463+0.0148

0.9685+0.0026
0.947540.0053

0.99854-0.0006
0.94744-0.0038

1.0000+0.0000
0.8872+0.0220

1.0000+0.0000
0.858240.0205

1.00004-0.0000
0.94134-0.0082

0.9994+0.0002
0.9524+0.0041

T . e |
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Fig. 6. Diagram of the TF-FRM in the SCLF-SF framework. In this figure, the symbol definitions are consistent with those in Fig. 2. The matrix x € R/*F,
as described in Section II, is constructed from the multisource hydrogen concentration sensor sequence data and serves as the nodal feature matrix in this
diagram. The adjacency matrix of the graph is constructed based on the Euclidean distance between sensors. The red arrow denotes the computation process
associated with representations in the time domain, the blue arrow indicates the computation process related to representations in the frequency domain, and
the gray arrow represents the spatial feature information of the distributed hydrogen concentration sensors. The complete structure of SCLF-SF is provided

in Fig. 1.
Recall Precision
F1 scord A‘cguracy
— SCLF
—— SCLF-SF
AUROC AUPRC
Fig. 7. Performance comparison between the SCLF and the SCLF-SF.

following evaluation indicators: an accuracy of 0.9071, a pre-
cision of 0.9459, a recall of 0.9308, an F'1 score of 0.9033,
an AUROC of 0.9787, and an AUPRC of 0.9528. In com-
parison to the previous SCLF framework, these indicators
exhibit reductions of 2.66%, 0.75%, 3.17%, 5.50%, 0.80%,
and 0.58%, respectively, as depicted in Fig. 7. Despite utilizing

16 — SCLF

14 —— SCLF-SF |

12

Loss

0 1000 2000 4000

Iteration

3000

Fig. 8. Pretraining loss of the SCLF and the SCLF-SE.

the same CL loss function L and conducting training over the
same 4000 iterations, the loss value of the pretrained TF-FRM
model in SCLF-SF remains notably higher than that of SCLF,
as shown in Fig. 8. This means that the integration of spatial
features into the TF-FRM may impede the ability of SCLF
to effectively capture the time—frequency consistency inherent
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3000 4000

Fig. 9. Pretraining loss of the TF-FRM in the first ablation experiment.

TABLE III

TESTING INDICATORS OF DIFFERENT SCLFS IN
THE FIRST ABLATION EXPERIMENT

| Defaut No LT No LF No LTF

0.9812+0.0034 0.8932+0.0351 0.9025+0.0181
test | 0.931940.0083 0.790540.0236 0.872640.0241

0.9529+0.0411
0.9018-£0.0540

train
Accuracy

in hydrogen concentration signals. Consequently, we con-
clude that the direct incorporation of spatial features into
the current SCLF framework may not represent the optimal
strategy.

E. Ablation Experiments

The performance improvements of these key components in
SCLF were validated through ablation experiments. To ensure
the reliability of the experimental results, all ablation exper-
iments were repeated five times, and the average accuracy
metrics were reported. In the first ablation experiment, the
default pretrained model was the complete TF-FRM, followed
by the individual removal of different components to evaluate
the interactions between various contrastive losses, as illus-
trated in Fig. 9. Specifically, when the contrastive loss in the
time domain is removed, the time encoder ceases to contribute
to the TF-FRM. Similarly, without the contrastive loss in the
frequency domain as a self-supervised signal, the frequency
encoder also becomes ineffective. Furthermore, in the absence
of the CL in the time—frequency domain joint space, the time
encoder and the frequency encoder can still operate indepen-
dently. The SCLF based on the default TF-FRM achieves the
best performance, as shown in Table III. This means that the
default TF-FRM can generate generalizable representations
for downstream hydrogen leakage location prediction, and the
ability of the ablated models to represent time—frequency fea-
tures gradually diminishes as CL components are successively
removed. The independent contribution of the time encoder
is significantly higher than that of the frequency encoder,
as evidenced by the 9.41% improvement in the accuracy
indicator for SCLF without L compared to SCLF without Lr.
Additionally, CL in the time—frequency domain joint space
contributes to more significant performance gains for SCLF.
Without the contrastive term Lg, the accuracy indicator of
SCLF decreases by 3.23%.
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2.6 — Single Rulebase
—— Multi-Rulebase
24
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[teration
Fig. 10. Testing losses of different MR-FLs in the second ablation
experiment.
TABLE IV
INDICATORS OF DIFFERENT MR-FLS DOWNSTREAM
IN THE SECOND ABLATION EXPERIMENT
Indicators | Single Rulebase (traditional) = Multi-Rulebase (ours)  Improvement
Accuracy 0.72724-0.0267 0.93194-0.0083 21.96%71
Precision 0.616140.0383 0.95304-0.0082 35.35%71
Recall 0.739740.0168 0.9613+0.0119 23.05%1
F1 score 0.68094-0.0230 0.9559+0.0103 28.76%1
AUROC 0.978140.0143 0.9866+0.0216 0.86%71
AUPRC 0.85764-0.0196 0.95844-0.0108 10.52%71
TABLE V
EFFECT OF THE NUMBER OF TIME AND FREQUENCY
FEATURES ON THE SCLF
D 4 6 8 10 12 14
Train loss 2.3384 2.0536 1.8701 1.8221 1.7815 1.7842
Test loss 2.3936 2.1440 1.9941 1.9588 1.8429 1.8187
Test Recall 0.9504 0.9561 0.9587 0.9613 0.9662 0.9695

In the second ablation experiment, the contribution of mul-
tirulebase to overall performance is investigated. MR-FL with
multirulebase can achieve rapid convergence during training,
while fuzzy locators with single rulebase are far behind,
as shown in Fig. 10. In addition, the accuracy, precision,
recall, F'1 score, AUROC, and AUPRC of the MR-FL with
multirulebase are improved by 21.96%, 35.35%, 23.05%,
28.76%, 0.86% and 10.52%, respectively, compared with that
without multirulebase, as shown in Table IV. Therefore, the
multirulebase is necessary for the proposed MR-FL.

F. Parameter Sensitivity

To validate the computational stability of the proposed
SCLF framework, the sensitivity analysis was conducted on
several key hyperparameters. Each experiment was repeated
five times, and the average results were reported. An increase
in the number of time—frequency features implies that the
upstream TF-FRM can capture more local and global temporal
and frequency information from the hydrogen concentration
data, thereby better characterizing the dynamic properties of
the signals. This also serves as a favorable factor for the
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Fig. 11. Effects of different hyperparameters on SCLF performance: (a) number of time—frequency features; (b) weight coefficient for different losses; and

(c) learning rate.
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Fig. 12.

significant improvement in the test accuracy of the downstream
MR-FLs, as shown in Table V. Meanwhile, the number of
time—frequency features significantly affects the computational
time of the downstream MR-FLs, as shown in Fig. 11(a).
This is because these features are concatenated as the input to
each MR-FL, and the increase in input dimensionality directly

Schematic of interpretability of the SCLF, which is analyzed and discussed with the X-coordinate of the leakage location as an example.

leads to a sharp rise in the number of rules in the rulebase of
each MR-FL. To balance the performance and computational
cost of SCLF, the number of time—frequency features was
set to 10 for pretraining, fine-tuning, and testing in the
remaining experiments of this study. As shown in Fig. 11(b),
SCLF achieves optimal performance across multiple metrics
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when A = 0.4. An excessively high A may cause TF-FRM
to overly focus on independent tasks in either the time or
frequency domain, neglecting the consistent representation of
time—frequency characteristics. Similarly, an excessively low
A is also unsuitable for self-CL in TF-FRM. According to
Fig. 11(c), a learning rate that is too high can easily lead
to overfitting, while a learning rate that is too low may be
insufficient to extract adequate generalized features from the
limited hydrogen concentration data. A learning rate of 5 x
1073 achieves the best performance and was selected as the
training benchmark for the remaining experiments in this
study. The proposed SCLF exhibits varying performance levels
due to differences in these hyperparameter values. Neverthe-
less, SCLF maintains stable test accuracy across a wide range
of parameter settings, as demonstrated in Table V and Fig. 11.
This means that the proposed SCLF exhibits a certain degree
of robustness in the selection of these hyperparameters.

G. Interpretability of the SCLF

The interpretability of the proposed SCLF framework is
analyzed in detail with a randomly selected sample of mul-
tisource hydrogen concentration sensor data. The following
content is analyzed and discussed with the X-coordinate of the
leakage location as an example. Fine-tuned TF-FRM generate
five time representations and five frequency representations,
respectively, as shown in Fig. 12. Each representation is
described by two fuzzy sets of MR-FL for the X-axis, and the
shape of each fuzzy set is determined by the mean and standard
deviation of the Gaussian membership function (i.e., ©). The
membership degree of all time and frequency representations
is plotted in the form of a heat map, and the firing degree is
further calculated. In the heat map of firing degree, the 952nd
value is the largest, which means that the 952nd rule will be
fired to the greatest extent. The heat map in the upper right
corner of Fig. 12 shows the rule output values under different
rulebases, and each rulebase has 1024 rules. In the heat map
in the lower right corner of Fig. 12, the output of multiple
rulebases fired is shown according to (17). The contribution
of rules other than the 952nd rule to the final output is almost
negligible by comparing the two heat maps, which means
that the 952nd rule is the dominant rule for MR-FL to make
decisions of traceability. More surprisingly, the 952nd rule can
be written in concrete form under the current sample, taking
the first rulebase as an example

IF: T1is X1,2, T2 is Xz’z, T3 is X3’2, T4 is X4,1
T5 is X5_2, F1lis X6,2’ F2is X7_2, F2is ng]
F4is X9’1, F5is X10’1

THEN : yls, = 0.4192 (20)

where )19152 is calculated according to (16). Therefore, we can
clearly understand the inference mechanism of the proposed
MR-FL by IF-THEN form rules in (15).

Although the 952nd rule is most actively fired, there are
significant differences among the different rulebases, as shown
in the heat map at the bottom right corner of Fig. 12, which is
helpful to analyze the output of the entire rulebases. It can be
clearly found that the output of the 11th rulebase is the largest,

3531113

and the probability is also the largest after processing by
SoftMax. Therefore, the X-coordinate for the leakage position
inferenced by the MR-FL is 11.

Based on the above analysis, it can be concluded that the
proposed SCLF has undoubtedly significant interpretability,
which is different from other opaque models, although it also
has to follow a complex computational process.

V. CONCLUSION

It is expensive and impractical to manually label the hydro-
gen leakage location and obtain a large number of supervised
learning samples, which presents technical challenges to tradi-
tional hydrogen leakage tracing methods. Therefore, this study
proposes an SCLF. The results demonstrated that the proposed
SCLF can effectively solve the downstream hydrogen leakage
traceability task. Compared with other methods based on ML,
DL, and CV, the proposed SCLF can show more remark-
able precision and generalization on previously unexpected
hydrogen concentration data and achieves an average testing
F1 score of 95.59%. In addition, the interpretability of the
proposed SCLF is analyzed, and its rule-based inference
mechanism can be understood by humans easily, which is
beneficial to hydrogen safety.

Finally, it is important to note that the spatial features of
distributed hydrogen concentration sensor data may contain
critical patterns of anomaly propagation, which could poten-
tially benefit the self-supervised learning capabilities of the
proposed SCLF framework. In addition, the dataset in this
study is relatively limited, and different scenarios and larger
data datasets should be used to evaluate the performance of
SCLF. These aspects represent key directions for our future
research.
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